×
Community Blog How to Use Confluent with FlinkSQL

How to Use Confluent with FlinkSQL

This article describes step-by-step instructions on how to use Confluent with FlinkSQL.

By Haoran Wang, Sr. Big Data Solution Architect of Alibaba Cloud

1. Log into Confluent Console and Create a Test Topic

1
2
3
4
5
6
7

2. Find out the Internal URL from Confluent Console

8

3. Use Flink Job to Connect to Confluent, Using Kafka Connector

9

CREATE TEMPORARY TABLE kafka_test (
  ordertime STRING,
  orderid STRING
) 
WITH (
    'connector' = 'kafka',
    'topic' = 'test-for-flink', -- 
    'properties.bootstrap.servers' = 'rb-3fb81xxxxxa1-internal.csp.aliyuncs.com:9095',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'json',
    'properties.security.protocol'='SASL_SSL',
    'properties.sasl.mechanism'='PLAIN',
    'properties.sasl.jaas.config'='org.apache.flink.kafka.shaded.org.apache.kafka.common.security.plain.PlainLoginModule required username="root" password="1qxxxxxxAZ";'

);

4. If Your Sample Data Has json array

10

Sample Data:

[
{
"key": "rabbitmq_consumer_tag",
"stringValue": "amq.ctag-Pj3q7et9gEclrgw-9kwpdg"
},
{
"key": "rabbitmq.content.type",
"stringValue": "application/json"
},
{
"key": "rabbitmq.content.encoding",
"stringValue": "UTF-8"
},
{
"key": "rabbitmq.delivery.mode",
"stringValue": "2"
},
{
"key": "rabbitmq.priority",
"stringValue": "0"
},
{
"key": "rabbitmq.correlation.id",
"stringValue": null
},
{
"key": "rabbitmq.reply.to",
"stringValue": null
},
{
"key": "rabbitmq.expiration",
"stringValue": null
},
{
"key": "rabbitmq.message.id",
"stringValue": null
},
{
"key": "rabbitmq.timestamp",
"stringValue": null
},
{
"key": "rabbitmq.type",
"stringValue": null
},
{
"key": "rabbitmq.user.id",
"stringValue": null
},
{
"key": "rabbitmq.app.id",
"stringValue": null
},
{
"key": "rabbitmq.delivery.tag",
"stringValue": "70"
},
{
"key": "rabbitmq.redeliver",
"stringValue": "false"
},
{
"key": "rabbitmq.exchange",
"stringValue": "rfid.ewallet.dx"
},
{
"key": "rabbitmq.routing.key",
"stringValue": "c09hL8xK"
},
{
"key": "rabbitmq.headers.__TypeId__",
"stringValue": "com.abl.mq.RabbitRfidBalanceUpdateMsg"
}
]

Then, you have two methods to consume it.

Method1, Using AS JSON_VALUE(`log`, '$[0].key')

CREATE TEMPORARY TABLE kafka_test (
  `log` STRING,
  `key_rabbitmq_consumer_tag` AS  JSON_VALUE(`log`, '$[0].key'),
  `value_key_rabbitmq_consumer_tag` AS  JSON_VALUE(`log`, '$[0].stringValue'),
  `key_rabbitmq_content_type` AS  JSON_VALUE(`log`, '$[1].key'),
  `value_rabbitmq_content_type` AS  JSON_VALUE(`log`, '$[1].stringValue')
) 
WITH (
    'connector' = 'kafka',
    'topic' = 'test2', -- 
    'properties.bootstrap.servers' = 'rb-3fb8192f1201b7a1-internal.csp.aliyuncs.com:9095',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'raw',
    'properties.security.protocol'='SASL_SSL',
    'properties.sasl.mechanism'='PLAIN',
    'properties.sasl.jaas.config'='org.apache.flink.kafka.shaded.org.apache.kafka.common.security.plain.PlainLoginModule required username="root" password="1qaz!QAZ";'

);

select key_rabbitmq_consumer_tag, value_key_rabbitmq_consumer_tag, key_rabbitmq_content_type, value_rabbitmq_content_type, `log` from kafka_test;

11

Method2, Using UDF

import json

@udf(result_type=DataTypes.STRING())
def convert_json(json_str):
    json_array = json.loads(json_str)
    new_dict = {}
    for item in json_array:
        new_dict[item["key"]] = item["stringValue"]
    return json.dumps(new_dict)

ZIP

In the future, you can edit or add some new function there, and zip the file again to upload.

12

13

Upload the zip file, you cannot upload a single .py file, because it requires the init.py as well.

14

Then you can use this UDF directly

15

Reference

0 0 0
Share on

Farruh

30 posts | 21 followers

You may also like

Comments

Farruh

30 posts | 21 followers

Related Products