×
Community Blog Auto Scaling Kubernetes Clusters Based on GPU Metrics

Auto Scaling Kubernetes Clusters Based on GPU Metrics

In this article, we will show you how you can perform auto scaling of Alibaba Cloud Container Service Kubernetes clusters based on GPU metrics.

In a deep learning system, trained models provide services through the Serving service. This document describes how to construct a Serving service that supports auto scaling in a Kubernetes cluster.

Kubernetes uses Horizontal Pod Autoscaler (HPA) to perform auto scaling based on metrics such as CPU and memory metrics by default. The native Heapster-based HPA module of Kubernetes does not support auto scaling based on GPU metrics, but supports auto scaling based on custom metrics. You can deploy a Prometheus Adapter as a CustomMetricServer. This server will provide the Prometheus metric registration API for HPA to call. You can then configure HPA to use GPU metrics as custom metrics for auto scaling.

Prerequisites

  1. A Container Service Kubernetes cluster has been created.
  2. A GPU monitor has been deployed as described in this guide.
  3. A Prometheus Adapter has been deployed for monitoring GPU metrics. The monitored data in the Prometheus Adapter will be used as a reference for auto scaling.

Note: After the native Heapster-based HPA module is configured to use custom metrics for auto scaling, it will be unable to use CPU and memory metrics for auto scaling.

Deployment

Log on to the active nodes and execute the script for generating the Prometheus Adapter certificate.

#!/usr/bin/env bash
set -e
set -o pipefail
set -u
b64_opts='--wrap=0'
# go get -v -u github.com/cloudflare/cfssl/cmd/...

export PURPOSE=metrics
openssl req -x509 -sha256 -new -nodes -days 365 -newkey rsa:2048 -keyout ${PURPOSE}-ca.key -out ${PURPOSE}-ca.crt -subj "/CN=ca"
echo '{"signing":{"default":{"expiry":"43800h","usages":["signing","key encipherment","'${PURPOSE}'"]}}}' > "${PURPOSE}-ca-config.json"

export SERVICE_NAME=custom-metrics-apiserver
export ALT_NAMES='"custom-metrics-apiserver.monitoring","custom-metrics-apiserver.monitoring.svc"'
echo "{\"CN\":\"${SERVICE_NAME}\", \"hosts\": [${ALT_NAMES}], \"key\": {\"algo\": \"rsa\",\"size\": 2048}}" | \
           cfssl gencert -ca=metrics-ca.crt -ca-key=metrics-ca.key -config=metrics-ca-config.json - | cfssljson -bare apiserver

cat <<-EOF > cm-adapter-serving-certs.yaml
apiVersion: v1
kind: Secret
metadata:
  name: cm-adapter-serving-certs
data:
  serving.crt: $(base64 ${b64_opts} < apiserver.pem)
  serving.key: $(base64 ${b64_opts} < apiserver-key.pem)
EOF

kubectl -n kube-system apply -f cm-adapter-serving-certs.yaml

Deploy the Prometheus Adapter as a CustomMetricServer.

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: custom-metrics-apiserver
  name: custom-metrics-apiserver
spec:
  replicas: 1
  selector:
    matchLabels:
      app: custom-metrics-apiserver
  template:
    metadata:
      labels:
        app: custom-metrics-apiserver
      name: custom-metrics-apiserver
    spec:
      serviceAccountName: custom-metrics-apiserver
      containers:
      - name: custom-metrics-apiserver
        image: registry.cn-beijing.aliyuncs.com/test-hub/k8s-prometheus-adapter-amd64
        args:
        - --secure-port=6443
        - --tls-cert-file=/var/run/serving-cert/serving.crt
        - --tls-private-key-file=/var/run/serving-cert/serving.key
        - --logtostderr=true
        - --prometheus-url=http://prometheus-svc.kube-system.svc.cluster.local:9090/
        - --metrics-relist-interval=1m
        - --v=10
        - --config=/etc/adapter/config.yaml
        ports:
        - containerPort: 6443
        volumeMounts:
        - mountPath: /var/run/serving-cert
          name: volume-serving-cert
          readOnly: true
        - mountPath: /etc/adapter/
          name: config
          readOnly: true
        - mountPath: /tmp
          name: tmp-vol
      volumes:
      - name: volume-serving-cert
        secret:
          secretName: cm-adapter-serving-certs
      - name: config
        configMap:
          name: adapter-config
      - name: tmp-vol
        emptyDir: {}
---
kind: ServiceAccount
apiVersion: v1
metadata:
  name: custom-metrics-apiserver
---
apiVersion: v1
kind: Service
metadata:
  name: custom-metrics-apiserver
spec:
  ports:
  - port: 443
    targetPort: 6443
  selector:
    app: custom-metrics-apiserver
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: custom-metrics-server-resources
rules:
- apiGroups:
  - custom.metrics.k8s.io
  resources: ["*"]
  verbs: ["*"]
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: adapter-config
data:
  config.yaml: |
    rules:
    - seriesQuery: '{uuid!=""}'
      resources:
        overrides:
          node_name: {resource: "node"}
          pod_name: {resource: "pod"}
          namespace_name: {resource: "namespace"}
      name:
        matches: ^nvidia_gpu_(.*)$
        as: "${1}_over_time"
      metricsQuery: ceil(avg_over_time(<<.Series>>{<<.LabelMatchers>>}[3m]))
    - seriesQuery: '{uuid!=""}'
      resources:
        overrides:
          node_name: {resource: "node"}
          pod_name: {resource: "pod"}
          namespace_name: {resource: "namespace"}
      name:
        matches: ^nvidia_gpu_(.*)$
        as: "${1}_current"
      metricsQuery: <<.Series>>{<<.LabelMatchers>>}
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: custom-metrics-resource-reader
rules:
- apiGroups:
  - ""
  resources:
  - namespaces
  - pods
  - services
  verbs:
  - get
  - list
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: hpa-controller-custom-metrics
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: custom-metrics-server-resources
subjects:
- kind: ServiceAccount
  name: horizontal-pod-autoscaler
  namespace: kube-system

Assign permissions to roles. If you use a namespace other than custom-metric, you need to change the value of the namespace parameter in the template.

apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
  name: v1beta1.custom.metrics.k8s.io
  namespace: kube-system
spec:
  service:
    name: custom-metrics-apiserver
    namespace: kube-system # Change this value if a namespace other than custom-metric is used.
  group: custom.metrics.k8s.io
  version: v1beta1
  insecureSkipTLSVerify: true
  groupPriorityMinimum: 100
  versionPriority: 100
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: custom-metrics-resource-reader
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: custom-metrics-resource-reader
subjects:
- kind: ServiceAccount
  name: custom-metrics-apiserver
  namespace: kube-system # Change this value if a namespace other than custom-metric is used.
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: custom-metrics:system:auth-delegator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:auth-delegator
subjects:
- kind: ServiceAccount
  name: custom-metrics-apiserver
  namespace: kube-system # Change this value if a namespace other than custom-metric is used.
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: custom-metrics-auth-reader
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
  name: custom-metrics-apiserver
  namespace: kube-system

Call the APIServer through the CustomMetricServer to verify that the Prometheus Adapter has been successfully deployed as a CustomMetricServer.

# kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/*/temperature_celsius_current"
{"kind":"MetricValueList","apiVersion":"custom.metrics.k8s.io/v1beta1","metadata":{"selfLink":"/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/%2A/temperature_celsius_current"},"items":[]}

Modify the controller-manager configurations to use custom metrics for auto scaling. Log on to each of the three active nodes and execute the script for modifying the HPA configurations on the APIServer.

sed -i 's/--horizontal-pod-autoscaler-use-rest-clients=false/--horizontal-pod-autoscaler-use-rest-clients=true/g' /etc/kubernetes/manifests/kube-controller-manager.yaml

Test the modified configurations.

# kubectl -n kube-system describe po -l component=kube-controller-manager | grep 'horizontal-pod-autoscaler-use-rest-clients'

      --horizontal-pod-autoscaler-use-rest-clients=true
      --horizontal-pod-autoscaler-use-rest-clients=true
      --horizontal-pod-autoscaler-use-rest-clients=true

Auto Scaling Metrics

After a Prometheus CustomMetricServer is deployed, use the configMap named adapter-config to configure the metrics that are to be exposed by the Prometheus CustomMetricServer to the APIServer. The following GPU metrics are supported:

1

Auto Scaling Based on GPU Metrics

Deploy the deployment

apiVersion: v1
kind: Service
metadata:
  name:  fast-style-transfer-serving
  labels:
    app: tensorflow-serving
spec:
  ports:
    - name: http-serving
      port: 5000
      targetPort: 5000
  selector:
    app: tensorflow-serving
---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: fast-style-transfer-serving
  labels:
    app: tensorflow-serving
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: tensorflow-serving
    spec:
      containers:
        - name: serving
          image: "registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/fast-style-transfer-serving:la_muse"
          command: ["python", "app.py"]
          resources:
            limits:
              nvidia.com/gpu: 1

Create an HPA that supports auto scaling based on GPU metrics.

kind: HorizontalPodAutoscaler
apiVersion: autoscaling/v2beta1
metadata:
  name: gpu-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: fast-style-transfer-serving
  minReplicas: 1
  maxReplicas: 10
  metrics:
  - type: Pods
    pods:
      metricName: duty_cycle_current # Average GPU usage of the pod.
      targetAverageValue: 40

View HPA metrics and their values.

# kubectl get hpa
NAME      REFERENCE                                TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
gpu-hpa   Deployment/fast-style-transfer-serving   0 / 40    1         10        1          37s

Use the fast-style-transfer algorithm to deploy a stress testing application. This application will send images to Serving continuously.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: fast-style-transfer-press
  labels:
    app: fast-style-transfer-press
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: fast-style-transfer-press
    spec:
      containers:
        - name: serving
          image: "registry.cn-hangzhou.aliyuncs.com/xiaozhou/fast-style-transfer-press:v0"
          env:
            - name: SERVER_IP
              value: fast-style-transfer-serving
            - name: BATCH_SIZE
              value: "100"
            - name: TOTAL_SIZE
              value: "12000"

After the application is deployed, you can observe the GPU metric changes on the monitoring panel.

2

You can also observe the metric changes through HPA.

# kubectl get hpa
NAME             REFERENCE                 TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
sample-gpu-hpa   Deployment/demo-service   63 / 30    1         10        1          3m

After the test has started, you can see that the pod has been scaled out.

NAME                                           READY     STATUS    RESTARTS   AGE
fast-style-transfer-press-69c48966d8-dqf5n     1/1       Running   0          4m
fast-style-transfer-serving-84587c94b7-7xp2d   1/1       Running   0          5m
fast-style-transfer-serving-84587c94b7-slbdn   1/1       Running   0          47s

You can also see the scaled-out pod and GPU metrics on the monitoring panel.

3

Stop the stress testing application. Run the following command to stop the stress testing application:

kubectl scale deploy fast-style-transfer-press --replicas=0 # Reduce the number of replicas to 0.

(You can also perform the scaling operation on the console.)

Verify that the value of dutyCycle has been changed to 0 in HPA.

kubectl get hpa
NAME      REFERENCE                                TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
gpu-hpa   Deployment/fast-style-transfer-serving   0 / 40    1         10        3          9m

After a period of time, check whether the pod has been scaled in.

kubectl get po
NAME                                           READY     STATUS    RESTARTS   AGE
fast-style-transfer-serving-84587c94b7-7xp2d   1/1       Running   0          10m

To learn more about Alibaba Cloud Container Service for Kubernetes, visit https://www.alibabacloud.com/product/kubernetes

0 0 0
Share on

Alibaba Container Service

164 posts | 30 followers

You may also like

Comments

Alibaba Container Service

164 posts | 30 followers

Related Products