Spark是一個通用的巨量資料分析引擎,具有高效能、易用和普遍性等特點,可用於進行複雜的記憶體分析,構建大型、低延遲的資料分析應用。DataWorks為您提供EMR Spark節點,便於您在DataWorks上進行Spark任務的開發和周期性調度。本文為您介紹如何建立EMR Spark節點,並通過詳細的應用樣本,為您介紹EMR Spark節點的功能。
前提條件
登入EMR叢集至DataWorks。操作詳情請參見註冊EMR叢集至DataWorks。
(可選,RAM帳號需要)進行任務開發的RAM帳號已被添加至對應工作空間中,並具有開發或空間管理員(許可權較大,謹慎添加)角色許可權,新增成員的操作詳情請參見為工作空間增加空間成員。
已購買資源群組完成資源群組配置。包括綁定工作空間、網路設定等。詳情請參見新增和使用Serverless資源群組。
已建立商務程序。資料開發(DataStudio)基於商務程序對不同開發引擎進行具體開發操作,所以您建立節點前需要先建立商務程序,操作詳情請參見建立商務程序。
如果您在開發工作單位時,需要特定的開發環境支援,可使用DataWorks提供的自訂鏡像功能,定製化構建任務執行所需的組件鏡像。更多資訊,請參見鏡像管理。
使用限制
僅支援使用Serverless資源群組(推薦)或獨享調度資源群組運行該類型任務。
DataLake或自訂叢集若要在DataWorks管理中繼資料,需先在叢集側配置EMR-HOOK。若未配置,則無法在DataWorks中即時展示中繼資料、產生審計日誌、展示血緣關係、開展EMR相關治理任務。配置EMR-HOOK,詳情請參見配置Spark SQL的EMR-HOOK。
EMR on ACK類型的Spark叢集及EMR Serverless Spark叢集不支援血緣。
EMR on ACK 類型的Spark叢集及EMR Serverless Spark叢集僅支援通過OSS REF的方式直接引用OSS資源、上傳資源到OSS,不支援上傳資源到HDFS。
DataLake叢集、自訂叢集支援通過OSS REF的方式直接引用OSS資源、上傳資源到OSS及上傳資源到HDFS。
準備工作:開發Spark任務並擷取JAR包
在使用DataWorks調度EMR Spark任務前,您需要先在EMR中開發Spark任務代碼並完成任務代碼的編譯,產生編譯後的任務JAR包,EMR Spark任務的開發指導詳情請參見Spark概述。
後續您需要將任務JAR包上傳至DataWorks,在DataWorks中周期性調度EMR Spark任務。
步驟一:建立EMR Spark節點
進入資料開發頁面。
登入DataWorks控制台,切換至目標地區後,單擊左側導覽列的 ,在下拉框中選擇對應工作空間後單擊進入資料開發。
建立EMR Spark節點。
按右鍵目標商務程序,選擇
。說明您也可以滑鼠移至上方至建立,選擇
。在建立節點對話方塊中,輸入名稱,並選擇引擎執行個體、節點類型及路徑。單擊確認,進入EMR Spark節點編輯頁面。
說明節點名稱支援大小寫字母、中文、數字、底線(_)和小數點(.)。
步驟二:開發Spark任務
在EMR Spark節點編輯頁面雙擊已建立的節點,進入任務開發頁面,您可以根據不同情境需求選擇適合您的操作方案:
(推薦)先從本地上傳資源至DataStudio,再引用資源。詳情請參見方案一:先上傳資源後引用EMR JAR資源。
使用OSS REF方式引用OSS資源,詳情請參見方案二:直接引用OSS資源。
方案一:先上傳資源後引用EMR JAR資源
DataWorks也支援您從本地先上傳資源至DataStudio,再引用資源。EMR Spark任務編譯完成後,您需擷取編譯後的JAR包,建議根據JAR包大小選擇不同方式儲存JAR包資源。
上傳JAR包資源,建立為DataWorks的EMR資源並提交,或直接儲存在EMR的HDFS儲存中(EMR on ACK 類型的Spark叢集及EMR Serverless Spark叢集不支援上傳資源到HDFS)。
JAR包小於200MB時
建立EMR JAR資源。
JAR包小於200MB時,可將JAR包通過本地上傳的方式上傳為DataWorks的EMR JAR資源,便於後續在DataWorks控制台進行可視化管理,建立完成資源後需進行提交,操作詳情請參見建立和使用EMR資源。
說明首次建立EMR資源時,如果您希望JAR包上傳後儲存在OSS中,您需要先參考介面提示進行授權操作。
引用EMR JAR資源。
雙擊建立的EMR Spark節點,開啟EMR Spark 節點的代碼編輯頁面。
在
節點下,找到上述步驟中已上傳的EMR JAR資源,右鍵選擇引用資源。選擇引用資源後,當前開啟的EMR Spark節點的編輯頁面會自動添加資源引用代碼,引用程式碼範例如下。
##@resource_reference{"spark-examples_2.12-1.0.0-SNAPSHOT-shaded.jar"} spark-examples_2.12-1.0.0-SNAPSHOT-shaded.jar
如果成功自動添加上述引用代碼,表明資源引用成功。其中,spark-examples_2.12-1.0.0-SNAPSHOT-shaded.jar為您實際上傳的EMR JAR資源名稱。
改寫EMR Spark節點代碼,補充spark submit命令,改寫後的樣本如下。
說明EMR Spark節點編輯代碼時不支援備註陳述式,請務必參考如下樣本改寫任務代碼,不要隨意添加註釋,否則後續運行節點時會報錯。
##@resource_reference{"spark-examples_2.11-2.4.0.jar"} spark-submit --class org.apache.spark.examples.SparkPi --master yarn spark-examples_2.11-2.4.0.jar 100
其中:
org.apache.spark.examples.SparkPi:為您實際編譯的JAR包中的任務主Class。
spark-examples_2.11-2.4.0.jar:為您實際上傳的EMR JAR資源名稱。
其他參數可參考以上樣本不做修改,您也可執行以下命令查看
spark submit
的使用協助,根據需要修改spark submit
命令。說明若您需要在Spark節點中使用
spark submit
命令簡化的參數,您需要在代碼中自行添加,例如,--executor-memory 2G
。Spark節點僅支援使用Yarn的Cluster提交作業。
spark submit
方式提交的任務,deploy-mode推薦使用cluster模式,不建議使用client模式。
spark-submit --help
JAR包大於等於200MB時
建立EMR JAR資源。
JAR包大於等於200MB時,無法通過本地上傳的方式直接上傳為DataWorks的資源,建議直接將JAR包儲存在EMR的HDFS中,並記錄下JAR包的儲存路徑,以便後續在DataWorks調度Spark任務時引用該路徑。
引用EMR JAR資源。
JAR包儲存在HDFS時,您可以直接在EMR Spark節點中通過代碼指定JAR包路徑的方式引用JAR包。
雙擊建立的EMR Spark節點,開啟EMR Spark 節點的代碼編輯頁面。
編寫spark submit命令,樣本如下。
spark-submit --master yarn --deploy-mode cluster --name SparkPi --driver-memory 4G --driver-cores 1 --num-executors 5 --executor-memory 4G --executor-cores 1 --class org.apache.spark.examples.JavaSparkPi hdfs:///tmp/jars/spark-examples_2.11-2.4.8.jar 100
其中:
hdfs:///tmp/jars/spark-examples_2.11-2.4.8.jar:為JAR包實際在HDFS中的路徑。
org.apache.spark.examples.JavaSparkPi:為您實際編譯的JAR包中的任務主class。
其他參數為實際EMR叢集的參數,需根據實際情況進行修改配置。您也可以執行以下命令查看spark submit的使用協助,根據需要修改spark submit命令。
重要若您需要在Spark節點中使用Spark-submit命令簡化的參數,您需要在代碼中自行添加,例如,
--executor-memory 2G
。Spark節點僅支援使用Yarn的Cluster提交作業。
spark-submit方式提交的任務,deploy-mode推薦使用cluster模式,不建議使用client模式。
spark-submit --help
方案二:直接引用OSS資源
(可選)配置進階參數
您可在節點進階設定處配置Spark特有屬性參數。更多Spark屬性參數設定,請參考Spark Configuration。不同類型EMR叢集可配置的進階參數存在部分差異,具體如下表。
DataLake叢集/自訂叢集:EMR on ECS
進階參數 | 配置說明 |
queue | 提交作業的調度隊列,預設為default隊列。 如果您在註冊EMR叢集至DataWorks工作空間時,配置了工作空間級的YARN資源隊列:
關於EMR YARN說明,詳情請參見隊列基礎配置,註冊EMR叢集時的隊列配置詳情請參見設定全域YARN資源隊列。 |
priority | 優先順序,預設為1。 |
FLOW_SKIP_SQL_ANALYZE | SQL語句執行方式。取值如下:
說明 該參數僅支援用於資料開發環境測試回合流程。 |
USE_GATEWAY | 不支援。 |
其他 |
|
Hadoop叢集:EMR on ECS
進階參數 | 配置說明 |
queue | 提交作業的調度隊列,預設為default隊列。 如果您在註冊EMR叢集至DataWorks工作空間時,配置了工作空間級的YARN資源隊列:
關於EMR YARN說明,詳情請參見隊列基礎配置,註冊EMR叢集時的隊列配置詳情請參見設定全域YARN資源隊列。 |
priority | 優先順序,預設為1。 |
FLOW_SKIP_SQL_ANALYZE | SQL語句執行方式。取值如下:
說明 該參數僅支援用於資料開發環境測試回合流程。 |
USE_GATEWAY | 設定本節點提交作業時,是否通過Gateway叢集提交。取值如下:
說明 如果本節點所在的叢集未關聯Gateway叢集,此處手動設定參數取值為 |
其他 |
|
Spark叢集:EMR ON ACK
進階參數 | 配置說明 |
queue | 不支援。 |
priority | 不支援。 |
FLOW_SKIP_SQL_ANALYZE | SQL語句執行方式。取值如下:
說明 該參數僅支援用於資料開發環境測試回合流程。 |
USE_GATEWAY | 不支援。 |
其他 |
|
EMR Serverless Spark叢集
相關參數設定請參見提交Spark任務參數設定。
進階參數 | 配置說明 |
queue | 提交作業的調度隊列,預設為dev_queue隊列。 |
priority | 優先順序,預設為1。 |
FLOW_SKIP_SQL_ANALYZE | SQL語句執行方式。取值如下:
說明 該參數僅支援用於資料開發環境測試回合流程。 |
USE_GATEWAY | 不支援。 |
SERVERLESS_RELEASE_VERSION | Spark引擎版本,預設使用管理中心的叢集管理中叢集配置的預設引擎版本。如需為不同任務設定不同的引擎版本,您可在此進行設定。 |
SERVERLESS_QUEUE_NAME | 指定資源隊列,預設使用管理中心的叢集管理中叢集配置的預設資源隊列。如有資源隔離和管理需求,可通過添加隊列實現。詳情請參見管理資源隊列。 |
其他 |
|
執行SQL任務
在工具列單擊表徵圖,在參數對話方塊選擇已建立的調度資源群組,單擊運行。
說明訪問公用網路或VPC網路環境的資料來源需要使用與資料來源測試連通性成功的調度資源群組。詳情請參見網路連通方案。
如果您後續執行任務需要修改使用的資源群組,您可單擊帶參運行表徵圖,選擇需要更換的調度資源群組。
使用EMR Spark節點查詢資料時,返回的查詢結果最大支援10000條資料,並且資料總量不能超過10MB。
單擊表徵圖,儲存編寫的SQL語句。
(可選)煙霧測試 (Smoke Test)。
如果您希望在開發環境進行煙霧測試 (Smoke Test),可在執行節點提交,或節點提交後執行,煙霧測試 (Smoke Test),操作詳情請參見執行煙霧測試 (Smoke Test)。
步驟三:配置節點調度
如您需要周期性執行建立的節點任務,可單擊節點編輯頁面右側的調度配置,根據業務需求配置該節點任務的調度資訊。配置詳情請參見任務調度屬性配置概述。
您需要設定節點的重跑屬性和依賴的上遊節點,才可以提交節點。
步驟四:發布節點任務
節點任務配置完成後,需執行提交發佈動作,提交發布後節點即會根據調度配置內容進行周期性運行。
單擊工具列中的表徵圖,儲存節點。
單擊工具列中的表徵圖,提交節點任務。
提交時需在提交對話方塊中輸入變更描述,並根據需要選擇是否在節點提交後執行程式碼檢閱。
說明您需設定節點的重跑屬性和依賴的上遊節點,才可提交節點。
程式碼檢閱可對任務的代碼品質進行把控,防止由於任務代碼有誤,未經審核直接發布上線後出現任務報錯。如進行程式碼檢閱,則提交的節點代碼必須通過評審人員的審核才可發布,詳情請參見程式碼檢閱。
如您使用的是標準模式的工作空間,任務提交成功後,需單擊節點編輯頁面右上方的發布,將該任務發布至生產環境執行,操作請參見發布任務。
後續步驟
任務提交發布後,會基於節點的配置周期性運行,您可單擊節點編輯介面右上方的營運,進入營運中心查看周期任務的調度運行情況。詳情請參見查看並管理周期任務。