All Products
Search
Document Center

MaxCompute:Getting started

Last Updated:Dec 02, 2024

This topic provides an example on how to use MaxCompute SQLML and the logistic regression of the binary classification model of Platform for AI (PAI). In this example, Mushroom Data Set, an open source dataset is used to make predictions about whether mushrooms are toxic.

Prerequisites

An Alibaba Cloud account is created, and real-name verification is performed for the account. For more information, see Create an Alibaba Cloud account.

If you want to perform operations as a RAM user, make sure that the RAM user is available and is granted the related permissions. For more information, see Prepare a RAM user.

Procedure

  1. Optional: Activate the MaxCompute service that uses the pay-as-you-go billing method, DataWorks Basic Edition, and the services of Platform for AI that use the pay-as-you-go billing method. The services of PAI include Machine Learning Designer, Deep Learning Containers (DLC), and Elastic Algorithm Service (EAS). The services must be deployed in the same region.

    1. Go to the product page of MaxCompute and click Buy Now.

      For more information about how to activate MaxCompute, see Activate MaxCompute and DataWorks.

      Note
      • If you do not activate MaxCompute but use this method to activate MaxCompute, DataWorks Basic Edition and the MaxCompute service that uses the pay-as-you-go billing method are activated by default.

      • If you have activated the MaxCompute service that uses the pay-as-you-go billing method, skip this step.

    2. Go to the buy page of DataWorks and activate DataWorks Basic Edition.

      For more information about how to activate DataWorks, see Activate DataWorks.image.png

      Note

      If you have activated DataWorks Basic Edition, skip this step.

    3. Go to the Platform for AI, activate the services of PAI, and create the default workspace.

      For more information about how to activate the services of Platform for AI, see Activate PAI and create a default workspace.image.png

      Note

      If you have activated the services of PAI and created a workspace, skip this step.

  2. Download the Mushroom Data Set file named agaricus-lepiota.data and save the file as a TXT, CSV, or LOG file, such as agaricus-lepiota.data.txt.

  3. Log on to the DataWorks console and create or configure a DataWorks workspace.

    • If a DataWorks workspace is available, go to the Workspace page to associate the MaxCompute compute engine with the DataWorks workspace and turn on Schedule PAI Task for the workspace.

      1. In the left-side navigation pane of the DataWorks console, click Workspaces to go to the Workspaces page.

      2. On the Workspaces page, find the desired workspace and click Manage in the Actions column.

      3. In the left-side navigation pane of the SettingCenter page, click Workspace. In the Basic Properties section of the Basic Settings tab, turn on Schedule PAI Tasks.

      4. In the left-side navigation pane, choose Data Sources > Data Sources. On the Data Sources page, add a MaxCompute data source. For more information about how to add a MaxCompute data source, see Add a MaxCompute data source.

    • If no DataWorks workspaces are available, create one. In the Create Workspace panel, associate the MaxCompute compute engine with the workspace and turn on Schedule PAI Nodes. For more information about how to create a DataWorks workspace, see Create a workspace.

  4. In the DataWorks console, create a table named mushroom_classification and import data of the prepared dataset to the table.

    1. On the Workspaces page, find the desired workspace and choose Shortcuts > Data Development in the Actions column. On the DataStudio page, create the table mushroom_classification.

      For more information about how to create a table, see Create and manage MaxCompute tables.

      The following DDL statement is used to create a table:

      create table mushroom_classification (
          label      string               comment 'poisonous=p,edible=e',
          cap_shape  string               comment 'bell=b,conical=c,convex=x,flat=f,knobbed=k,sunken=s',
          cap_surface string              comment 'fibrous=f,grooves=g,scaly=y,smooth=s',
          cap_color string                comment 'brown=n,buff=b,cinnamon=c,gray=g,green=r,pink=p,purple=u,red=e,white=w,yellow=y',
          bruises string                  comment 'bruises=t,no=f',
          odor string                     comment 'almond=a,anise=l,creosote=c,fishy=y,foul=f,musty=m,none=n,pungent=p,spicy=s',
          gill_attachment string          comment 'attached=a,descending=d,free=f,notched=n',
          gill_spacing string             comment 'close=c,crowded=w,distant=d',
          gill_size string                comment 'broad=b,narrow=n',
          gill_color string               comment 'black=k,brown=n,buff=b,chocolate=h,gray=g,green=r,orange=o,pink=p,purple=u,red=e,white=w,yellow=y',
          stalk_shape string              comment 'enlarging=e,tapering=t',
          stalk_root string               comment 'bulbous=b,club=c,cup=u,equal=e,rhizomorphs=z,rooted=r,missing=?',
          stalk_surface_above_ring string comment 'fibrous=f,scaly=y,silky=k,smooth=s',
          stalk_surface_below_ring string comment 'fibrous=f,scaly=y,silky=k,smooth=s',
          stalk_color_above_ring string   comment 'brown=n,buff=b,cinnamon=c,gray=g,orange=o,pink=p,red=e,white=w,yellow=y',
          stalk_color_below_ring string   comment 'brown=n,buff=b,cinnamon=c,gray=g,orange=o,pink=p,red=e,white=w,yellow=y',
          veil_type string                comment 'partial=p,universal=u',
          veil_color string               comment 'brown=n,orange=o,white=w,yellow=y',
          ring_number string              comment 'none=n,one=o,two=t',
          ring_type string                comment 'cobwebby=c,evanescent=e,flaring=f,large=l,none=n,pendant=p,sheathing=s,zone=z',
          spore_print_color string        comment 'black=k,brown=n,buff=b,chocolate=h,green=r,orange=o,purple=u,white=w,yellow=y',
          population string               comment 'abundant=a,clustered=c,numerous=n,scattered=s,several=v,solitary=y',
          habitat string                  comment 'grasses=g,leaves=l,meadows=m,paths=p,urban=u,waste=w,woods=d'
      );
    2. Import the data in the agaricus-lepiota.data.txt file to the mushroom_classification table. In the Data Import Wizard dialog box, select Match by location and click Import Data.

      For more information about how to upload data, see Create tables and upload data.导入数据

    3. Use the ad hoc query feature of DataWorks, create an ODPS SQL node, and then execute SQL statements to verify the data import results.

      For more information about the ad hoc query feature, see Use the ad-hoc query feature to execute SQL statements (optional).

      Sample statement:

      select * from mushroom_classification;

      The following result is returned.导入结果

  5. Use one-hot encoding to process data in the mushroom_classification table.

    The logistic regression for binary classification models requires that fields be of NUMERIC type. Therefore, one-hot encoding is used to convert the enumerated values into numeric values. For example, valid values for cap_shape are b, c, x, f, k, and s. One-hot encoding converts the six enumerated values into six columns. Each column corresponds to an enumerated value. If the value of cap_shape is equal to the enumerated value of the column to which it corresponds, enter 1. Otherwise, enter 0.

    1. Optional: Create a workflow. For example, you can create a workflow named mc_test.

      For more information about how to create a workflow, see Create an auto triggered workflow.

      Note

      If you have created a workflow, skip this step.

    2. Create an ODPS Script node, write code, use one-hot encoding to process the imported data, and then write the processed data into the new table named mushroom_classification_one_hot.

      For more information about how to create an ODPS Script node, see Develop a MaxCompute script task.

      Sample statements:

      create temporary function one_hot as 'onehot.OneHotEncoding' using
      #CODE ('lang'='JAVA')
      package onehot;
      
      import com.aliyun.odps.udf.UDFException;
      import com.aliyun.odps.udf.UDTF;
      import com.aliyun.odps.udf.annotation.Resolve;
      
      import java.io.IOException;
      import java.util.ArrayList;
      import java.util.List;
      
      @Resolve({"string,string,string,string,string,string,string,string,string,string," +
              "string,string,string,string,string,string,string,string,string,string,string,string" +
              "->" +
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,"+
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint," +
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint," +
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint," +
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint," +
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint," +
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint," +
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint," +
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint," +
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint," +
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint," +
              "bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint,bigint," +
              "bigint,bigint,bigint,bigint,bigint,bigint"})
      public class OneHotEncoding extends UDTF {
        private static char[][] features = {
                { 'b','c','x','f','k','s'}, //cap-shape
                { 'f','g','y','s'}, //cap-surface
                { 'n','b','c','g','r','p','u','e','w','y'}, //cap-color
                { 't','f'}, //bruises
                { 'a','l','c','y','f','m','n','p','s'}, //odor
                { 'a','d','f','n'}, //gill-attachment
                { 'c','w','d'}, //gill-spacing
                { 'b','n'}, //gill-size
                { 'k','n','b','h','g','r','o','p','u','e','w','y'}, //gill-color
                { 'e','t'}, //stalk-shape
                { 'b','c','u','e','z','r','?'}, //stalk-root
                { 'f','y','k','s'}, //stalk-surface-above-ring
                { 'f','y','k','s'}, //stalk-surface-below-ring
                { 'n','b','c','g','o','p','e','w','y'}, //stalk-color-above-ring
                { 'n','b','c','g','o','p','e','w','y'}, //stalk-color-below-ring
                { 'p','u'}, //veil-type
                { 'n','o','w','y'}, //veil-color
                { 'n','o','t'}, //ring-number
                { 'c','e','f','l','n','p','s','z'}, //ring-type
                { 'k','n','b','h','r','o','u','w','y'}, //spore-print-color
                { 'a','c','n','s','v','y'}, //population
                { 'g','l','m','p','u','w','d'}, //habitat
        };
        @Override
        public void process(Object[] objects) throws UDFException, IOException {
          List<Long> featuresEncoding = new ArrayList<>(126);
          for (int i = 0; i < objects.length; i++) {
            String value = (String)objects[i];
            char[] feature = features[i];
            for (char c : feature) {
              featuresEncoding.add(value.charAt(0) == c ? 1L : 0L);
            }
          }
          forward(featuresEncoding.toArray());
        }
      }
      
      #END CODE;
      
      create table mushroom_classification_one_hot as
      select t.*, label
      from mushroom_classification
      lateral view 
      one_hot(cap_shape,cap_surface,cap_color,bruises,odor,gill_attachment, 
              gill_spacing, gill_size, gill_color, stalk_shape,stalk_root ,
              stalk_surface_above_ring,stalk_surface_below_ring,stalk_color_above_ring,
              stalk_color_below_ring,veil_type,veil_color,ring_number,ring_type,spore_print_color,
              population,habitat) t
      AS f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,
      f21,f22,f23,f24,f25,f26,f27,f28,f29,f30,f31,f32,f33,f34,f35,f36,f37,f38,f39,f40,
      f41,f42,f43,f44,f45,f46,f47,f48,f49,f50,f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,
      f61,f62,f63,f64,f65,f66,f67,f68,f69,f70,f71,f72,f73,f74,f75,f76,f77,f78,f79,f80,
      f81,f82,f83,f84,f85,f86,f87,f88,f89,f90,f91,f92,f93,f94,f95,f96,f97,f98,f99,f100,
      f101,f102,f103,f104,f105,f106,f107,f108,f109,f110,f111,f112,f113,f114,f115,f116,
      f117,f118,f119,f120,f121,f122,f123,f124,f125,f126;
    3. Use the ad hoc query feature of DataWorks, create an ODPS SQL node, and then execute SQL statements to verify the results of one-hot encoding-based processing.

      Sample statement:

      select * from mushroom_classification_one_hot;

      The following result is returned.one-hot处理结果

    4. Use the ad hoc query feature of DataWorks, create an ODPS SQL node, and then create a training dataset and a test dataset based on the data in mushroom_classification_one_hot.

      Sample statements:

      -- Create a training dataset. About 25% of the data is used to train models. 
      create table mushroom_training as 
      select * from mushroom_classification_one_hot where sample(4,1);
      
      -- Create a test dataset. About the rest 75% of the data is used to predict and evaluate models. 
      create table mushroom_predict as 
      select * from mushroom_classification_one_hot except all select * from mushroom_training;
  6. Create a machine learning model and make predictions.

    1. Use the ad hoc query feature of DataWorks, create an ODPS SQL node, and then create a logistic regression for the binary classification model based on the training dataset. The model is named lr_test_model.

      Sample statement:

      create model lr_test_model
      with properties('model_type'='logisticregression_binary', 'goodValue'='p','maxIter'='1000')
      as select * from mushroom_training;
      Note
      • You can configure more parameters in properties. The parameters must be the same as the parameters in Platform for AI. For more information, see Linear SVM.

      • The SQL engine extracts and executes the statement after as and saves the results in a temporary table. You can view the results on the Summary tab in the LogView of a job. The lifecycle of the temporary table is one day. After the lifecycle elapses, the temporary table is automatically deleted.

      • If you want to drop the model, execute the drop offlinemodel lr_test_model statement.

    2. Use the ad hoc query feature of DataWorks, create an ODPS SQL node, and then use ml_predict to predict the data in the test dataset based on the lr_test_model model.

      Sample statements:

      create table mushroom_predict_result as 
      select * from ml_predict(
          lr_test_model, 
          (select * from mushroom_predict)
      );
      Note
      • The SQL engine saves the subquery results of ml_predict to a temporary table. The lifecycle of the temporary table is one day. After the lifecycle elapses, the temporary table is automatically deleted.

      • The results of ml_predict can be placed in the FROM clause of the SQL statement. You can also execute the INSERT or CREATE TABLE AS statement to save the results to another table. For more information about ml_predict, see Supported model prediction functions.

    3. Use the ad hoc query feature of DataWorks, create an ODPS SQL node, and then execute the required statement to view the prediction results for the mushroom_predict_result table.

      Sample statement:

      select * from mushroom_predict_result;

      The following result is returned.预测结果

  7. Use ml_evaluate to evaluate the prediction accuracy of the model.

    For more information about ml_evaluate, see Supported model evaluation functions.