文档中的实践案例主要是根据实际工作中的工单需求产生。本文档将从工单需求,加工编排等方面介绍如何使用LOG DSL编排解决任务需求。
非标准JSON对象转JSON对象并展开
需要对收集的dict数据进行二次嵌套展开操作。首先将dict数据转成JSON数据,再使用e_json
函数进行展开即可。
原始日志
content: { 'referer': '-', 'request': 'GET /phpMyAdmin', 'status': 404, 'data-1': { 'aaa': 'Mozilla', 'bbb': 'asde' }, 'data-2': { 'up_adde': '-', 'up_host': '-' } }
数据加工语句
将上述
content
内容中的单引号转换成双引号,转换成JSON格式数据。e_set("content_json",str_replace(ct_str(v("content")),"'",'"'))
处理后的日志为:
content: { 'referer': '-', 'request': 'GET /phpMyAdmin', 'status': 404, 'data-1': { 'aaa': 'Mozilla', 'bbb': 'asde' }, 'data-2': { 'up_adde': '-', 'up_host': '-' } } content_json: { "referer": "-", "request": "GET /phpMyAdmin", "status": 404, "data-1": { "aaa": "Mozilla", "bbb": "asde" }, "data-2": { "up_adde": "-", "up_host": "-" } }
对经过处理后的标准化的
content_json
数据进行展开。例如要展开第一层只需要设定JSON中的depth
参数为1即可。e_json("content_json",depth=1,fmt='full')
展开的日志为:
content_json.data-1.data-1: {"aaa": "Mozilla", "bbb": "asde"} content_json.data-2.data-2: {"up_adde": "-", "up_host": "-"} content_json.referer: - content_json.request: GET /phpMyAdmin content_json.status: 404
如果
depth
设置为2,则展开的日志为:content_json.data-1.aaa: Mozilla content_json.data-1.bbb: asde content_json.data-2.up_adde: - content_json.data-2.up_host: - content_json.referer: - content_json.request: GET /phpMyAdmin content_json.status: 404
综上LOG DSL规则可以如以下形式:
e_set("content_json",str_replace(ct_str(v("content")),"'",'"')) e_json("content_json",depth=2,fmt='full')
加工后数据
加工后的数据是按照
depth
为2处理的,具体形式如下:content: { 'referer': '-', 'request': 'GET /phpMyAdmin', 'status': 404, 'data-1': { 'aaa': 'Mozilla', 'bbb': 'asde' }, 'data-2': { 'up_adde': '-', 'up_host': '-' } } content_json: { "referer": "-", "request": "GET /phpMyAdmin", "status": 404, "data-1": { "aaa": "Mozilla", "bbb": "asde" }, "data-2": { "up_adde": "-", "up_host": "-" } } content_json.data-1.aaa: Mozilla content_json.data-1.bbb: asde content_json.data-2.up_adde: - content_json.data-2.up_host: - content_json.referer: - content_json.request: GET /phpMyAdmin content_json.status: 404
其他格式文本转JSON展开
对一些非标准的JSON格式数据,如果进行展开可以通过组合规则的形式进行操作。
原始日志
content : { "pod" => { "name" => "crm-learning-follow-7bc48f8b6b-m6kgb" }, "node" => { "name" => "tw5" }, "labels" => { "pod-template-hash" => "7bc48f8b6b", "app" => "crm-learning-follow" }, "container" => { "name" => "crm-learning-follow" }, "namespace" => "testing1" }
数据加工语句
首先将日志格式转换为JSON形式,可以使用
str_logtash_config_normalize
函数进行转换,操作如下:e_set("normalize_data",str_logtash_config_normalize(v("content")))
可以使用JSON函数进行展开操作,具体如下:
e_json("normalize_data",depth=1,fmt='full')
综上LOG DSL规则可以如以下形式:
e_set("normalize_data",str_logtash_config_normalize(v("content"))) e_json("normalize_data",depth=1,fmt='full')
加工后数据
content : { "pod" => { "name" => "crm-learning-follow-7bc48f8b6b-m6kgb" }, "node" => { "name" => "tw5" }, "labels" => { "pod-template-hash" => "7bc48f8b6b", "app" => "crm-learning-follow" }, "container" => { "name" => "crm-learning-follow" }, "namespace" => "testing1" } normalize_data: { "pod": { "name": "crm-learning-follow-7bc48f8b6b-m6kgb" }, "node": { "name": "tw5" }, "labels": { "pod-template-hash": "7bc48f8b6b", "app": "crm-learning-follow" }, "container": { "name": "crm-learning-follow" }, "namespace": "testing1" } normalize_data.container.container: {"name": "crm-learning-follow"} normalize_data.labels.labels: {"pod-template-hash": "7bc48f8b6b", "app": "crm-learning-follow"} normalize_data.namespace: testing1 normalize_data.node.node: {"name": "tw5"} normalize_data.pod.pod: {"name": "crm-learning-follow-7bc48f8b6b-m6kgb"}
部分文本特殊编码转换
在日常工作环境中,会遇到一些十六进制字符,需要对其解码才能正常阅读。可以使用str_hex_escape_encode
函数对一些十六进制字符进行转义操作。
原始日志
content : "\xe4\xbd\xa0\xe5\xa5\xbd"
LOG DSL编排
e_set("hex_encode",str_hex_escape_encode(v("content")))
加工后数据
content : "\xe4\xbd\xa0\xe5\xa5\xbd" hex_encode : "你好"
XML字段展开
在工作中会遇到各种类型数据,例如xml数据。如果要展开xml数据可以使用xml_to_json
函数处理。
测试日志
str : <?xmlversion="1.0"?> <data> <countryname="Liechtenstein"> <rank>1</rank> <year>2008</year> <gdppc>141100</gdppc> <neighborname="Austria"direction="E"/> <neighborname="Switzerland"direction="W"/> </country> <countryname="Singapore"> <rank>4</rank> <year>2011</year> <gdppc>59900</gdppc> <neighborname="Malaysia"direction="N"/> </country> <countryname="Panama"> <rank>68</rank> <year>2011</year> <gdppc>13600</gdppc> <neighborname="Costa Rica"direction="W"/> <neighborname="Colombia"direction="E"/> </country> </data>
LOG DSL编排
e_set("str_json",xml_to_json(v("str")))
加工后的日志
str : <?xmlversion="1.0"?> <data> <countryname="Liechtenstein"> <rank>1</rank> <year>2008</year> <gdppc>141100</gdppc> <neighborname="Austria"direction="E"/> <neighborname="Switzerland"direction="W"/> </country> <countryname="Singapore"> <rank>4</rank> <year>2011</year> <gdppc>59900</gdppc> <neighborname="Malaysia"direction="N"/> </country> <countryname="Panama"> <rank>68</rank> <year>2011</year> <gdppc>13600</gdppc> <neighborname="Costa Rica"direction="W"/> <neighborname="Colombia"direction="E"/> </country> </data> str_dict :{ "data": { "country": [{ "@name": "Liechtenstein", "rank": "1", "year": "2008", "gdppc": "141100", "neighbor": [{ "@name": "Austria", "@direction": "E" }, { "@name": "Switzerland", "@direction": "W" }] }, { "@name": "Singapore", "rank": "4", "year": "2011", "gdppc": "59900", "neighbor": { "@name": "Malaysia", "@direction": "N" } }, { "@name": "Panama", "rank": "68", "year": "2011", "gdppc": "13600", "neighbor": [{ "@name": "Costa Rica", "@direction": "W" }, { "@name": "Colombia", "@direction": "E" }] }] } }