本文为您介绍Designer提供的标准化组件。
背景信息
对一个表的某一列或多列,进行标准化处理,将产生的数据存入新表中。
标准化所使用的公式 :(X - Mean)/(standard deviation)。
Mean:样本平均值。
standard deviation:样本标准偏差,针对从总体抽样,利用样本来计算总体偏差,为了使算出的值与总体水平更接近,就必须将算出的标准偏差的值适度放大,即 。
样本标准偏差公式:。
其中代表所采用的样本X1,X2,…,Xn的均值。
组件配置
您可以使用以下任意一种方式,配置标准化组件参数。
方式一:可视化方式
在Designer工作流页面配置组件参数。
页签 | 参数 | 描述 |
字段设置 | 默认全选 | 默认全选,多余列不影响预测结果。 |
保留原始列 | 处理过的列增加“stdized_”前缀。支持DOUBLE类型与BIGINT类型。 | |
执行调优 | 计算核心数 | 系统根据输入数据量,自动分配训练的实例数量。 |
每个核内存数 | 系统根据输入数据量,自动分配内存。单位为MB。 |
方式二:PAI命令方式
使用PAI命令方式,配置该组件参数。您可以使用SQL脚本组件进行PAI命令调用,详情请参见SQL脚本。
稠密数据的命令
PAI -name Standardize -project algo_public -DkeepOriginal="false" -DoutputTableName="test_5" -DinputTablePartitions="pt=20150501" -DinputTableName="bank_data_partition" -DselectedColNames="euribor3m,pdays"
稀疏数据的命令
PAI -name Standardize -project projectxlib4 -DkeepOriginal="true" -DoutputTableName="kv_standard_output" -DinputTableName=kv_standard_test -DselectedColNames="f0,f1,f2" -DenableSparse=true -DoutputParaTableName=kv_standard_model -DkvIndices=1,2,8,6 -DitemDelimiter=",";
参数名称 | 是否必选 | 参数描述 | 默认值 |
inputTableName | 是 | 输入表的表名。 | 无 |
selectedColNames | 否 | 输入表中,参与训练的列。列名以英文逗号(,)分隔,支持INT和DOUBLE类型。如果输入为稀疏格式,则支持STRING类型的列。 | 所有列 |
inputTablePartitions | 否 | 输入表中,参与训练的分区。支持以下格式:
说明 如果指定多个分区,则使用英文逗号(,)分隔。 | 所有分区 |
outputTableName | 是 | 输出结果表。 | 无 |
outputParaTableName | 是 | 配置输出表。 | 无 |
inputParaTableName | 否 | 配置输入表。 | 无 |
keepOriginal | 否 | 是否保留原始列:
| false |
lifecycle | 否 | 输出表生命周期。 | 无 |
coreNum | 否 | 核心数量。 | 系统自动分配 |
memSizePerCore | 否 | 单个核心使用的内存数。 | 系统自动分配 |
enableSparse | 否 | 是否打开稀疏支持:
| false |
itemDelimiter | 否 | KV对之间分隔符。 | 默认”,” |
kvDelimiter | 否 | Key和Value之间分隔符。 | 默认”:” |
kvIndices | 否 | KV表中需要归一化的特征索引。 | 无 |
示例
详细示例
drop table if exists standardize_test_input;
create table standardize_test_input(
col_string string,
col_bigint bigint,
col_double double,
col_boolean boolean,
col_datetime datetime);
insert overwrite table standardize_test_input
select
*
from
(
select
'01' as col_string,
10 as col_bigint,
10.1 as col_double,
True as col_boolean,
cast('2016-07-01 10:00:00' as datetime) as col_datetime
union all
select
cast(null as string) as col_string,
11 as col_bigint,
10.2 as col_double,
False as col_boolean,
cast('2016-07-02 10:00:00' as datetime) as col_datetime
union all
select
'02' as col_string,
cast(null as bigint) as col_bigint,
10.3 as col_double,
True as col_boolean,
cast('2016-07-03 10:00:00' as datetime) as col_datetime
union all
select
'03' as col_string,
12 as col_bigint,
cast(null as double) as col_double,
False as col_boolean,
cast('2016-07-04 10:00:00' as datetime) as col_datetime
union all
select
'04' as col_string,
13 as col_bigint,
10.4 as col_double,
cast(null as boolean) as col_boolean,
cast('2016-07-05 10:00:00' as datetime) as col_datetime
union all
select
'05' as col_string,
14 as col_bigint,
10.5 as col_double,
True as col_boolean,
cast(null as datetime) as col_datetime
) tmp;
PAI命令行
drop table if exists standardize_test_input_output; drop table if exists standardize_test_input_model_output; PAI -name Standardize -project algo_public -DoutputParaTableName="standardize_test_input_model_output" -Dlifecycle="28" -DoutputTableName="standardize_test_input_output" -DinputTableName="standardize_test_input" -DselectedColNames="col_double,col_bigint" -DkeepOriginal="true"; drop table if exists standardize_test_input_output_using_model; drop table if exists standardize_test_input_output_using_model_model_output; PAI -name Standardize -project algo_public -DoutputParaTableName="standardize_test_input_output_using_model_model_output" -DinputParaTableName="standardize_test_input_model_output" -Dlifecycle="28" -DoutputTableName="standardize_test_input_output_using_model" -DinputTableName="standardize_test_input";
输入说明
standardize_test_input
col_string
col_bigint
col_double
col_boolean
col_datetime
01
10
10.1
true
2016-07-01 10:00:00
NULL
11
10.2
false
2016-07-02 10:00:00
02
NULL
10.3
true
2016-07-03 10:00:00
03
12
NULL
false
2016-07-04 10:00:00
04
13
10.4
NULL
2016-07-05 10:00:00
05
14
10.5
true
NULL
输出说明
standardize_test_input_output
col_string
col_bigint
col_double
col_boolean
col_datetime
stdized_col_bigint
stdized_col_double
01
10
10.1
true
2016-07-01 10:00:00
-1.2649110640673518
-1.2649110640683832
NULL
11
10.2
false
2016-07-02 10:00:00
-0.6324555320336759
-0.6324555320341972
02
NULL
10.3
true
2016-07-03 10:00:00
NULL
0.0
03
12
NULL
false
2016-07-04 10:00:00
0.0
NULL
04
13
10.4
NULL
2016-07-05 10:00:00
0.6324555320336759
0.6324555320341859
05
14
10.5
true
NULL
1.2649110640673518
1.2649110640683718
standardize_test_input_model_output
feature
json
col_bigint
{“name”: “standardize”, “type”:”bigint”, “paras”:{“mean”:12, “std”: 1.58113883008419}}
col_double
{“name”: “standardize”, “type”:”double”, “paras”:{“mean”:10.3, “std”: 0.1581138830082909}}
standardize_test_input_output_using_model
col_string
col_bigint
col_double
col_boolean
col_datetime
01
-1.2649110640673515
-1.264911064068383
true
2016-07-01 10:00:00
NULL
-0.6324555320336758
-0.6324555320341971
false
2016-07-02 10:00:00
02
NULL
0.0
true
2016-07-03 10:00:00
03
0.0
NULL
false
2016-07-04 10:00:00
04
0.6324555320336758
0.6324555320341858
NULL
2016-07-05 10:00:00
05
1.2649110640673515
1.2649110640683716
true
NULL
standardize_test_input_output_using_model_model_output
feature
json
col_bigint
{“name”: “standardize”, “type”:”bigint”, “paras”:{“mean”:12, “std”: 1.58113883008419}}
col_double
{“name”: “standardize”, “type”:”double”, “paras”:{“mean”:10.3, “std”: 0.1581138830082909}}