全部产品
Search
文档中心

云原生多模数据库 Lindorm:教程:通过JDBC Driver连接并访问Lindorm时序引擎

更新时间:Sep 10, 2024

本文介绍通过Lindorm JDBC Driver连接并访问时序引擎的具体操作。

前提条件

  • 已安装Java环境,要求安装JDK 1.8及以上版本。

  • 已将客户端IP地址添加至Lindorm白名单,具体操作请参见设置白名单

  • 已获取云原生多模数据库 Lindorm时序引擎的连接地址,具体操作请参见查看连接地址查看地址页面

操作步骤

  1. 通过以下两种方式安装Lindorm JDBC Driver依赖。

    • 手动安装。

      在本地自行下载JAR包集成JDBC Driver,下载链接为:Lindorm-all-client。选择需要安装的版本,以2.1.5为例,下载lindorm-all-client-2.1.5.jar包。

    • 通过Maven下载。

      如果在Maven项目中集成JDBC Driver,创建Project并在pom.xml中添加以下依赖配置,具体内容如下:

      <dependency>
          <groupId>com.aliyun.lindorm</groupId>  
          <artifactId>lindorm-all-client</artifactId>
          <version>2.2.1.3</version>
      </dependency>
      说明

      lindorm-all-client的版本号根据需求填写。

  2. 访问Lindorm时序引擎。完整的代码示例如下。

    import java.sql.*;
    
    class Test {
        public static void main(String[] args) {
            // 此处填写Lindorm时序引擎JDBC连接地址
            String url = "jdbc:lindorm:tsdb:url=http://ld-bp12pt80qr38p****-proxy-tsdb-pub.lindorm.rds.aliyuncs.com:8242";
            Connection conn = null;
    
            try {
                conn = DriverManager.getConnection(url);
                try (Statement stmt = conn.createStatement()) {
                    //创建时序数据表,默认访问 default database
                    stmt.execute("CREATE TABLE sensor1 (device_id VARCHAR TAG,region VARCHAR TAG,time TIMESTAMP,temperature DOUBLE,humidity DOUBLE,PRIMARY KEY(device_id))");
    
                    //批量写入数据
                    stmt.addBatch("INSERT INTO sensor1(device_id, region, time, temperature, humidity) values('F07A1260','north-cn','2021-04-22 15:33:00',12.1,45)");
                    stmt.addBatch("INSERT INTO sensor1(device_id, region, time, temperature, humidity) values('F07A1260','north-cn','2021-04-22 15:33:10',13.2,47)");
                    stmt.addBatch("INSERT INTO sensor1(device_id, region, time, temperature, humidity) values('F07A1260','north-cn','2021-04-22 15:33:20',10.6,46)");
                    stmt.addBatch("INSERT INTO sensor1(device_id, region, time, temperature, humidity) values('F07A1261','south-cn','2021-04-22 15:33:00',18.1,44)");
                    stmt.addBatch("INSERT INTO sensor1(device_id, region, time, temperature, humidity) values('F07A1261','south-cn','2021-04-22 15:33:10',19.7,44)");
                    stmt.executeBatch();
                    stmt.clearBatch();
                }
    
                // 使用绑定参数的方式查询数据
                // 强烈建议指定时间范围减少数据扫描
                try (PreparedStatement pstmt = conn.prepareStatement("SELECT device_id, region,time,temperature,humidity FROM sensor1 WHERE time >= ? and time <= ?")) {
                    Timestamp startTime =Timestamp.valueOf("2021-04-22 15:33:00");
                    Timestamp endTime = Timestamp.valueOf("2021-04-22 15:33:20");
                    pstmt.setTimestamp(1, startTime);
                    pstmt.setTimestamp(2, endTime);
                    try (ResultSet rs = pstmt.executeQuery()) {
                        while (rs.next()) {
                            String device_id = rs.getString("device_id");
                            String region = rs.getString("region");
                            Timestamp time = rs.getTimestamp("time");
                            Double temperature = rs.getDouble("temperature");
                            Double humidity = rs.getDouble("humidity");
                            System.out.printf("%s %s %s %f %f\n", device_id, region, time, temperature, humidity);
                        }
                    }
                }
            } catch (SQLException e) {
                // 异常处理需要结合实际业务逻辑编写
                e.printStackTrace();
            } finally {
                try {
                    if (conn != null) {
                        conn.close();
                    }
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    说明

    执行成功预计返回以下结果:

    F07A1261 south-cn 2021-04-22 15:33:00.0 18.100000 44.000000
    F07A1261 south-cn 2021-04-22 15:33:10.0 19.700000 44.000000
    F07A1260 north-cn 2021-04-22 15:33:00.0 12.100000 45.000000
    F07A1260 north-cn 2021-04-22 15:33:10.0 13.200000 47.000000
    F07A1260 north-cn 2021-04-22 15:33:20.0 10.600000 46.000000