データがテーブルにインポートされた後、テーブルデータに対してベクトル分析を実行できます。 このトピックでは、ベクトル分析を実行する方法について説明します。
前提条件
ベクトルデータがテーブルにインポートされます。 詳細については、「ベクターデータのインポート」をご参照ください。
ベクター解析の実行
この例では、ベクトル分析を実行して、2乗ユークリッド距離およびドット積距離 (またはコサイン類似度) を得る。
二乗ユークリッド距離の取得
ベクトル分析を実行して、2乗ユークリッド距離を取得します。
SELECT id, l2_squared_distance(feature, array[0.495181661387,0.108697291209,0.181728549067,0.109680543346,0.19713082404,0.0197809514512,0.534227452778,0.442411970815,0.409909873031,0.0975687394505]::float4[]) AS distance
FROM vector_test.car_info
ORDER BY feature <-> array[0.495181661387,0.108697291209,0.181728549067,0.109680543346,0.19713082404,0.0197809514512,0.534227452778,0.442411970815,0.409909873031,0.0975687394505]::float4[]
LIMIT 10;
サンプル結果:
id | distance
------+--------------------
2 | 0
1331 | 0.0677967891097069
1543 | 0.079616591334343
5606 | 0.0892329216003418
6423 | 0.0894578248262405
1667 | 0.0903968289494514
8215 | 0.0936210229992867
7801 | 0.0952572822570801
2581 | 0.0965127795934677
2645 | 0.0987173467874527
(10 rows)
ドット積距離 (またはコサイン類似度)
ベクトル分析を実行して、内積距離 (または正規化を使用する場合はコサイン類似度) を取得します。
SELECT id, dp_distance(feature, array[0.495181661387,0.108697291209,0.181728549067,0.109680543346,0.19713082404,0.0197809514512,0.534227452778,0.442411970815,0.409909873031,0.0975687394505]::float4[]) AS similarity
FROM vector_test.car_info
ORDER BY feature <-> array[0.495181661387,0.108697291209,0.181728549067,0.109680543346,0.19713082404,0.0197809514512,0.534227452778,0.442411970815,0.409909873031,0.0975687394505]::float4[]
LIMIT 10;
サンプル結果:
id | similarity
------+-------------------
2 | 1
1331 | 0.966101586818695
1543 | 0.960191607475281
5606 | 0.955383539199829
6423 | 0.955271065235138
1667 | 0.954801559448242
8215 | 0.953189492225647
7801 | 0.95237135887146
2581 | 0.951743602752686
2645 | 0.950641334056854
(10 rows)
統合クエリ
SQL文を実行して、構造化データと非構造化データの両方を照会します。 例:
SELECT id, dp_distance(feature, array[0.495181661387,0.108697291209,0.181728549067,0.109680543346,0.19713082404,0.0197809514512,0.534227452778,0.442411970815,0.409909873031,0.0975687394505]::float4[]) AS similarity
FROM vector_test.car_info
WHERE market_time >= '2020-10-30 00:00:00'
AND market_time < '2021-01-01 00:00:00'
AND color in ('red', 'white', 'blue')
AND price < 100
ORDER BY feature <-> array[0.495181661387,0.108697291209,0.181728549067,0.109680543346,0.19713082404,0.0197809514512,0.534227452778,0.442411970815,0.409909873031,0.0975687394505]::float4[]
LIMIT 10;
サンプル結果:
id | similarity
------+-------------------
7645 | 0.922723233699799
8956 | 0.920517802238464
8219 | 0.91210675239563
8503 | 0.895939946174622
5113 | 0.895431876182556
7680 | 0.893448948860168
8433 | 0.893425941467285
3604 | 0.89293098449707
3945 | 0.891274154186249
7153 | 0.891128540039062
(10 rows)