The anomaly comparison function compares the degree of differences of an observation object in two time ranges.
- Function syntax 1
- Function expressions
select anomaly_compare(long stamp, array[ feature_1, feature_2 ], long timePoint, long interval) select anomaly_compare(long stamp, array[ feature_1, feature_2 ], array[ feature1_name, feature2_name ], long timePoint, long interval)
- Input parameters
Parameter Description stamp The UNIX timestamp of the data. array[features] The metrics of the observation object at a specific point in time. array[featureNames] The description of the metrics. timePoint The UNIX timestamp of the time when the observed object changes. interval The interval at which data is collected. For example, if data is collected every 10 seconds, the interval is 10.
- Function expressions
- Function syntax 2
- Function expressions
select anomaly_compare(long stamp, array[ feature_1, feature_2 ], array[ feature1_name, feature2_name ], long version)
- Input parameters
Parameter Description stamp The UNIX timestamp of the data. array[features] The metrics of the observation object at a specific point in time. array[featureNames] The description of the metrics. version The version number of the time series. - A value of 0 indicates the raw data.
- A value of 1 indicates the new data.
- Function expressions
- Result
{ "results" : [ { "attr" : "cpu", "anomalyScore" : 0.01106371634297909, "details" : { "left" : [ { "key" : "mean", "value" : 0.07002069952622482 }, { "key" : "std", "value" : 0.1364542814430179 }, { "key" : "median", "value" : 0.04467685956328345 }, { "key" : "variance", "value" : 0.018619770924130346 } ], "rightMetrics" : [ { "key" : "mean", "value" : 0.4472823405432968 }, { "key" : "std", "value" : 0.22405908739288383 }, { "key" : "median", "value" : 0.42513225830553775 }, { "key" : "variance", "value" : 0.05020247464333195 } ] } } ] }
- Result description
- The mean, std, median, and variance methods are used for the statistics of a time series.
- If you specify the names of metrics, the names are included in the attr field. Otherwise, the prefix column_ is concatenated with the array subscript of a metric as the name of the metric, for example, column_0.
- The anomalyScore indicates the degree of difference of a feature metric. Value values: 0 to 1. If the value approaches 0, the degree of difference is low. If the value approaches 1, the degree of difference is high.
- Example