All Products
Search
Document Center

PolarDB:Manage models

Last Updated:Nov 08, 2024

This topic describes the syntax and parameters for model creation, upload, evaluation, and inference, and explains these operations with examples.

Overview

Built-in model

PolarDB for AI provides a built-in machine learning model named Tongyi Qianwen. You can use the PolarDB for AI feature provided by the model without the need for additional model configurations.

For more information, see the following topic:

Custom models

In actual business scenarios, you may need to optimize the algorithms and adjust the structures of models. A built-in model may not meet actual business requirements. PolarDB for AI allows you to build a custom model and run the model in confidential containers. This further ensures the data security of your model.

To build and use a custom model, do the following steps:

Externally trained models

The MLOps capabilities provided by PolarDB for AI allow you to upload, deploy, and use externally trained models. A wide array of external models are supported, such as sklearn-based LightGBM and GBDT and deep learning algorithms based on the TensorFlow or PyTorch framework.

To use an external model, do the following steps:

Create a model

This section describes how to create a model. A model is trained in an asynchronous manner. To check whether a model has been trained, query the status of the model.

Syntax

CREATE MODEL model_name WITH ( model_class = '', x_cols = '', y_cols='',model_parameter=()) AS (SELECT select_expr [, select_expr] ... FROM table_reference)

Parameters

Parameter

Description

model_name

The name of the model.

model_class

The type of the model. Valid values:

x_cols

The input columns for model training.

Note

Separate the names of multiple columns with commas (,).

y_cols

The output columns for model training.

model_parameter

The parameters for model training.

  • If the value of the model_class parameter is set to lightgbm, configure the model_parameter parameter as specified in Parameters for the LightGBM algorithm.

  • If the value of the model_class parameter is set to deepfm, configure the model_parameter parameter as specified in Parameters for the DeepFM algorithm.

  • If the value of the model_class parameter is set to kmeans, configure the model_parameter parameter as specified in Parameters for the K-means clustering algorithm.

  • If the value of the model_class parameter is set to randomforestreg, configure the model_parameter parameter as specified in Parameters for the random forest regression algorithm.

  • If the value of the model_class parameter is set to gbrt, configure the model_parameter parameter as specified in Parameters for the GBRT algorithm.

  • If the value of the model_class parameter is set to linearreg, configure the model_parameter parameter as specified in Parameters for the LR algorithm.

  • If the value of the model_class parameter is set to svr, configure the model_parameter parameter as specified in Parameters for the SVR algorithm.

  • If the value of the model_class parameter is set to bst, configure the model_parameter parameter as specified in Parameters for the bst algorithm.

select_expr

The name of the column.

table_reference

The name of the table.

Examples

Create a model named airlines_gbm.

/*polar4ai*/CREATE MODEL airlines_gbm WITH (model_class='lightgbm', x_cols ='Airline,Flight,AirportFrom,AirportTo,DayOfWeek,Time,Length', y_cols='Delay',model_parameter=(boosting_type='gbdt', n_estimators=100, max_depth=8, num_leaves=256)) as (SELECT * FROM db4ai.airlines_train)

Sample result:

Query OK, 0 rows affected (0.79 sec)

Upload a model

This section describes how to upload externally trained machine learning models to PolarDB for AI and use the platform to manage models. PolarDB for AI supports the PMML, ONNX, and Checkpoint (applicable to TensorFlow and PyTorch platforms) model formats.

Syntax

UPLOAD MODEL model_name WITH (model_location = '', req_location = '') 

Parameters

Parameter

Description

model_name

The name of the model.

model_location

The file path of the model.

req_location

The path of the file on which the model depends.

Examples

Upload a model named my_model to the PolarDB for AI platform.

/*polar4ai*/UPLOAD MODEL my_model WITH (model_location='https://xxxx.oss-cn-hangzhou.aliyuncs.com/xxxx/model.pkl?Expires=xxxx&OSSAccessKeyId=xxxx&Signature=xxxx', req_location='https://xxxx.oss-cn-hangzhou.aliyuncs.com/xxxx/requirements.txt?Expires=xxxx&OSSAccessKeyId=xxxx&Signature=xxxx');

Sample result:

Query OK, 0 rows affected (0.29 sec)

Execute the following statement to query the status of the model.

/*polar4ai*/ SHOW MODEL my_model;

Sample result:

+-------------+-----------------------------------------------------------------------------------------------------------------------------+
| modelStatus | modelPath                                                                                                                   |
+-------------+-----------------------------------------------------------------------------------------------------------------------------+
| saved       | http://db4ai-collie-cn-hangzhou.oss-cn-hangzhou.aliyuncs.com/xxxxx.pkl?OSSAccessKeyId=xxxxxx&Expires=xxxx&Signature=xxxxxx  |
+-------------+-----------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.23 sec)

If the value of the modelStatus parameter is saved, the model has been uploaded.

Deploy a model

This section describes how to deploy an uploaded model on the PolarDB for AI platform. After the deployment is complete, the model is in the online state. A model in the online state can be quickly called for inferences.

Syntax

DEPLOY MODEL model_name

Parameters

Parameter

Description

model_name

The name of the model.

Examples

Deploy a model named my_model on PolarDB for AI.

/*polar4ai*/ DEPLOY MODEL my_model;

Sample result:

Query OK, 0 rows affected (0.29 sec)

Execute the following statement to view the status of the model:

/*polar4ai*/ SHOW MODEL my_model;

Sample result:

+-------------+-----------------------------------------------------------------------------------------------------------------------------+
| modelStatus | modelPath                                                                                                                   |
+-------------+-----------------------------------------------------------------------------------------------------------------------------+
| serving     | http://db4ai-collie-cn-hangzhou.oss-cn-hangzhou.aliyuncs.com/xxxxx.pkl?OSSAccessKeyId=xxxxxx&Expires=xxxx&Signature=xxxxxx  |
+-------------+-----------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.23 sec)

If the value of the modelStatus parameter is serving, the model is deployed.

View a model

View a model list

This section describes how to view all models in the current cluster.

Syntax

SHOW MODELS

Examples

/*polar4ai*/SHOW MODELS

Sample result:

+-----------------------+-----------------+--------------+
| model_name            | model_class     | model_status |
+-----------------------+-----------------+--------------+
| airline_rfr           | randomforestreg | saved        |
| gbrt1                 | gbrt            | saved        |
| airline_deepfm        | deepfm          | saved        |
| airlines_gbm          | lightgbm        | saved        |
| lgbm1                 | lightgbm        | saved        |
| blackfriday_linearreg | linearreg       | saved        |
+-----------------------+-----------------+--------------+
6 rows in set (0.24 sec)

View the status of a model

You can view the current status of a model. Use the following syntax to check whether the model is trained. A model can be in one of the following states:

  • training: The model is being trained.

  • loading_data: Data is being loaded to the model.

  • trained: The model is trained.

  • saved: The model is saved.

  • serving: The model is in service.

  • deleted: The model is deleted.

Syntax

SHOW MODEL model_name 

Parameters

Parameter

Description

model_name

The name of the model.

Examples

Query the status of the airlines_gbm model.

/*polar4ai*/SHOW MODEL airlines_gbm;

Sample result:

+-------------+-----------------------------------------------------------------------------------------------------------------------------+
| modelStatus | modelPath                                                                                                                   |
+-------------+-----------------------------------------------------------------------------------------------------------------------------+
| saved       | http://db4ai-collie-cn-hangzhou.oss-cn-hangzhou.aliyuncs.com/xxxxx.pkl?OSSAccessKeyId=xxxxxx&Expires=xxxx&Signature=xxxxxx  |
+-------------+-----------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.23 sec)
Note

The validity period of a modelPath is 100 minutes. To determine whether the link is still valid, check the value of the Expires parameter in the modelPath. Make sure that you access the link within the validity period.

View model details

Syntax

DESCRIBE MODEL model_name

Parameters

Parameter

Description

model_name

The name of the model.

Examples

Query the details of the airlines_gbm model.

/*polar4ai*/DESCRIBE MODEL airlines_gbm;

Sample result:

+-------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| model_name        | model_description                                                                                                                                                                                                                                                                 |
+-------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| airlines_gbm      | basic information:model_name:airlines_gbm model_class:lightgbm feature important:features,imp_gain,imp_splitAirline,0.3327,0.0376 AirportFrom,0.2178,0.1842 Time,0.1893,0.1999 AirportTo,0.1668,0.187 DayOfWeek,0.0384,0.1236 Length,0.0307,0.1269 Flight,0.0242,0.1408           |
+-------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.65 sec)

Evaluate a model

This section describes how to evaluate a trained model.

Syntax

SELECT select_expr [, select_expr] ... FROM EVALUATE (MODEL model_name, SELECT select_expr_for_prediction [, select_expr_for_prediction] ... FROM table_reference ) WITH (x_cols = '', y_cols='', metrics='')

Parameters

Parameter

Description

select_expr

The name of the column displayed in the model evaluation result.

model_name

The name of the model.

select_expr_for_prediction

The name of the column used for model evaluation.

table_reference

The name of the table.

x_cols

The input columns for model training. Separate the names of multiple columns with commas (,).

y_cols

The output columns for model training.

metrics

The metrics for model evaluation. Valid values:

  • acc: accuracy. This metric can be used for classification tasks.

  • r2_score: coefficient of determination. This metric can be used for regression tasks.

  • ks: KS value, which indicates the degree of separation between positive and negative classes. This metric can be used for classification tasks.

  • auc: AUC value, which indicates the area below the ROC curve. This metric can be used for classification tasks.

  • Fscore: F-score, also known as the F1 score, indicates the harmonic mean of precision and recall. This metric can be used for classification tasks.

Examples

  1. Evaluate a trained model named airlines_gbm.

    /*polar4ai*/SELECT Delay FROM evaluate(MODEL airlines_gbm, SELECT * FROM db4ai.airlines_test) WITH (x_cols = 'Airline,Flight,AirportFrom,AirportTo,DayOfWeek,Time,Length', y_cols='Delay', metrics='acc');

    Sample result:

    +--------------------------------------+
    | task_id                              |
    +--------------------------------------+
    | df05244e-21f7-11ed-be66-xxxxxxxxxxxx |
    +--------------------------------------+
    1 row in set (0.95 sec)
  2. Execute the following statement to view the status of the task:

    /*polar4ai*/SHOW TASK `df05244e-21f7-11ed-be66-xxxxxxxxxxxx`;

    Sample result:

    +------------+----------------------------------------------------------------------------------------------------------------------------------------------------+-----------------+----------------------------+----------------------------+
    | taskStatus | filePath                                                                                                                                           | results         | startTime                  | endTime                    |
    +------------+----------------------------------------------------------------------------------------------------------------------------------------------------+-----------------+----------------------------+----------------------------+
    | finish     | http://db4ai-collie-cn-hangzhou.oss-cn-hangzhou.aliyuncs.com/pc-xxxxxxx/airlines_gbm/xxxxx.csv?OSSAccessKeyId=xxxxxx&Expires=xxxx&Signature=xxxxxx | {"acc": 0.6694} | 2022-08-22 17:22:21.122101 | 2022-08-22 17:22:39.428811 |
    +------------+----------------------------------------------------------------------------------------------------------------------------------------------------+-----------------+----------------------------+----------------------------+
    1 row in set (0.24 sec)
    Note

    The validity period of a filePath is 100 minutes. To check whether the link is still valid, view the value of the Expires parameter in the filePath. Make sure that you access the link within the validity period.

Use a model for inference

This section describes how to use a trained model for online or offline inference.

Syntax

SELECT select_expr [, select_expr] ... FROM PREDICT (MODEL model_name, SELECT select_expr_for_prediction [, select_expr_for_prediction] ... FROM table_reference LIMIT row_count) WITH (x_cols= '')

Parameters

Parameter

Description

select_expr

The name of the column displayed in the model inference result.

model_name

The name of the model.

select_expr_for_prediction

The name of the column used for model inference.

table_reference

The name of the table.

mode

The inference mode. The value async specifies offline inference. If you leave this parameter empty, online inference is used.

row_count

The number of samples used for model inference.

x_cols

The input columns for model training. Separate the names of multiple columns with commas (,).

Examples

  • Online inference

    Use the airlines_gbm model for online inference.

    /*polar4ai*/SELECT Delay FROM PREDICT(MODEL airlines_gbm, SELECT * FROM db4ai.airlines_test LIMIT 10) WITH (x_cols = 'Airline,Flight,AirportFrom,AirportTo,DayOfWeek,Time,Length', y_cols='Delay');

    Sample result:

    +-------+-------------------+
    | Delay | predicted_results |
    +-------+-------------------+
    |     1 | 0                 |
    |     0 | 0                 |
    |     0 | 0                 |
    |     0 | 0                 |
    |     0 | 0                 |
    |     0 | 0                 |
    |     1 | 0                 |
    |     0 | 0                 |
    |     0 | 0                 |
    |     1 | 0                 |
    +-------+-------------------+
    10 rows in set (0.74 sec)
  • Offline inference

    If the number of inference samples is greater than 1,000, PolarDB for AI prompts you to use an offline inference task.

    ERROR 9050 (HY000): Please limit the SQL selected data length to less than '1000' or convert to offline prediction

    Create an offline inference task.

    /*polar4ai*/SELECT Delay FROM predict(MODEL airlines_gbm, SELECT * FROM db4ai.airlines_test) WITH (x_cols = 'Airline,Flight,AirportFrom,AirportTo,DayOfWeek,Time,Length', y_cols='Delay', mode='async');

    Sample result:

    +--------------------------------------+
    | task_id                              |
    +--------------------------------------+
    | bd0c1722-21e7-11ed-94a8-xxxxxxxxxxxx |
    +--------------------------------------+
    1 row in set (0.75 sec)

    The preceding query result shows task_id, which can be used to query the task status and the download URL of the corresponding result.

    /*polar4ai*/SHOW TASK `bd0c1722-21e7-11ed-94a8-xxxxxxxxxxxx`

    Sample result:

    +------------+----------------------------------------------------------------------------------------------------------------------------------------------------+-----------------+----------------------------+----------------------------+
    | taskStatus | filePath                                                                                                                                           | results         | startTime                  | endTime                    |
    +------------+----------------------------------------------------------------------------------------------------------------------------------------------------+-----------------+----------------------------+----------------------------+
    | finish     | http://db4ai-collie-cn-hangzhou.oss-cn-hangzhou.aliyuncs.com/pc-xxxxxxx/airlines_gbm/xxxxx.csv?OSSAccessKeyId=xxxxxx&Expires=xxxx&Signature=xxxxxx |                 | 2022-08-22 14:57:51.355240 | 2022-08-22 14:58:18.316818 |
    +------------+----------------------------------------------------------------------------------------------------------------------------------------------------+-----------------+----------------------------+----------------------------+
    1 row in set (0.24 sec)
    Note

    The validity period of a filePath is 100 minutes. To check whether the link is still valid, view the value of the Expires parameter in the filePath. Make sure that you access the link within the validity period.

Manage offline evaluation and inference tasks

View the list of offline tasks

This section describes how to view all offline tasks in the current cluster.

Note

Offline tasks are batch processing tasks that run for a long period of time and do not generate results in real time. Offline tasks include offline evaluation and offline inference tasks.

Syntax

SHOW TASKS

Examples

Execute the following statement to view all offline tasks in the current cluster:

/*polar4ai*/SHOW TASKS;

Sample result:

+--------------------------------------+------------+-------------+----------------------------+----------------------------+
| task_id                              | task_type  | task_status | start_timestr              | end_timestr                |
+--------------------------------------+------------+-------------+----------------------------+----------------------------+
| 2cba0c74-1f8f-11ed-934a-xxxxxxxxxxxx | prediction | finish      | 2022-08-19 15:18:51.206829 |                            |
| 77b3a186-1f94-11ed-8eaa-xxxxxxxxxxxx | evaluation | finish      | 2022-08-19 15:56:44.465594 |                            |
| 972547a4-1fa3-11ed-9c6b-xxxxxxxxxxxx | evaluation | finish      | 2022-08-19 17:44:59.790353 | 2022-08-19 17:45:23.750100 |
| bd0c1722-21e7-11ed-94a8-xxxxxxxxxxxx | prediction | finish      | 2022-08-22 14:57:51.355240 | 2022-08-22 14:58:18.316818 |
| df05244e-21f7-11ed-be66-xxxxxxxxxxxx | evaluation | finish      | 2022-08-22 16:53:20.381577 | 2022-08-22 16:53:37.189953 |
| ec956db8-21fb-11ed-8400-xxxxxxxxxxxx | evaluation | finish      | 2022-08-22 17:22:21.122101 | 2022-08-22 17:22:39.428811 |
+--------------------------------------+------------+-------------+----------------------------+----------------------------+
9 rows in set (0.18 sec)

View the status of an offline task

This section describes how to view the status of an offline task. A task may be in one of the following states:

  • init: The task is being initialized.

  • running: The task is being executed.

  • finish: The task is complete.

  • fail: The task failed.

Syntax

SHOW TASK `task_id` 

Parameters

Parameter

Description

task_id

The ID of the task.

Examples

Query the status of the task whose task ID is df05244e-21f7-11ed-be66-xxxxxxxxxxxx.

/*polar4ai*/SHOW TASK `df05244e-21f7-11ed-be66-xxxxxxxxxxxx`

Sample result:

+------------+----------------------------------------------------------------------------------------------------------------------------------------------------+-----------------+----------------------------+----------------------------+
| taskStatus | filePath                                                                                                                                           | results         | startTime                  | endTime                    |
+------------+----------------------------------------------------------------------------------------------------------------------------------------------------+-----------------+----------------------------+----------------------------+
| finish     | http://db4ai-collie-cn-hangzhou.oss-cn-hangzhou.aliyuncs.com/pc-xxxxxxx/airlines_gbm/xxxxx.csv?OSSAccessKeyId=xxxxxx&Expires=xxxx&Signature=xxxxxx | {"acc": 0.6694} | 2022-08-22 17:22:21.122101 | 2022-08-22 17:22:39.428811 |
+------------+----------------------------------------------------------------------------------------------------------------------------------------------------+-----------------+----------------------------+----------------------------+
1 row in set (0.24 sec)
Note

The validity period of a filePath is 100 minutes. To check whether the link is still valid, view the value of the Expires parameter in the filePath. Make sure that you access the link within the validity period.

Delete a model

This section describes how to delete a model that is no longer required.

Syntax

DROP MODEL model_name 

Parameters

Parameter

Description

model_name

The name of the model.

Examples

Delete the airlines_gbm model.

/*polar4ai*/DROP MODEL airlines_gbm 

If a result similar to the following is returned, the airlines_gbm model is deleted:

Query OK, 0 rows affected (0.57 sec)

Best practices for custom model management

This section walks you through custom model management. Offline model training and online inference are performed in the following examples.

  1. Preform offline training.

    The following script uses the LightGBM algorithm for offline training:

    # coding: utf-8
    from pathlib import Path
    
    import pandas as pd
    from sklearn.metrics import mean_squared_error
    
    import lightgbm as lgb
    import joblib
    
    def train_model():
        print('Loading data...')
        # load or create your dataset
        df_train = pd.read_csv('regression.train', header=None, sep='\t')
        df_test = pd.read_csv('regression.test', header=None, sep='\t')
    
        y_train = df_train[0]
        y_test = df_test[0]
        X_train = df_train.drop(0, axis=1)
        X_test = df_test.drop(0, axis=1)
    
        # create dataset for lightgbm
        lgb_train = lgb.Dataset(X_train, y_train)
        lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
    
    
        # specify your configurations as a dict
        params = {
            'boosting_type': 'gbdt',
            'objective': 'regression',
            'metric': {'l2', 'l1'},
            'num_leaves': 31,
            'learning_rate': 0.05,
            'feature_fraction': 0.9,
            'bagging_fraction': 0.8,
            'bagging_freq': 5,
            'verbose': 0
        }
    
        print('Starting training...')
        # train
        gbm = lgb.train(params,
                        lgb_train,
                        num_boost_round=20,
                        valid_sets=lgb_eval,
                        callbacks=[lgb.early_stopping(stopping_rounds=5)])
    
    
        print('Saving model...')
        # save model to file
        # gbm.save_model('model.txt')
        joblib.dump(gbm, 'lgb.pkl')
    
        print('Starting predicting...')
        # predict
        y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration)
        # eval
        rmse_test = mean_squared_error(y_test, y_pred) ** 0.5
        print(f'The RMSE of prediction is: {rmse_test}')
    

    In the preceding script, the model file is exported in the pkl format. The predict method is called to query the inference result. The python files on which the model depends are also required.

    The following example shows the content of the requirements.txt file:

    lightgbm==3.3.3
  2. Upload a model.

    1. Execute the following statement to upload the model to PolarDB for AI:

      /*polar4ai*/UPLOAD MODEL my_model WITH (model_location='https://xxxx.oss-cn-hangzhou.aliyuncs.com/xxxx/model.pkl?Expires=xxxx&OSSAccessKeyId=xxxx&Signature=xxxx', req_location='https://xxxx.oss-cn-hangzhou.aliyuncs.com/xxxx/requirements.txt?Expires=xxxx&OSSAccessKeyId=xxxx&Signature=xxxx')

      The model_location parameter specifies the path of the model file. The req_location parameter specifies the path of the file on which the model depends. You can prepare the two files in advance, upload the files to your Object Storage Service (OSS) bucket, and then execute the preceding statement to upload the files to PolarDB for AI.

      Sample result:

      Query OK, 0 rows affected (0.29 sec)
    2. Execute the following statement to query the status of the model.

      /*polar4ai*/ SHOW my_model;

      Sample result:

      +-------------+-----------------------------------------------------------------------------------------------------------------------------+
      | modelStatus | modelPath                                                                                                                   |
      +-------------+-----------------------------------------------------------------------------------------------------------------------------+
      | saved       | http://db4ai-collie-cn-hangzhou.oss-cn-hangzhou.aliyuncs.com/xxxxx.pkl?OSSAccessKeyId=xxxxxx&Expires=xxxx&Signature=xxxxxx  |
      +-------------+-----------------------------------------------------------------------------------------------------------------------------+
      1 row in set (0.23 sec)

      If the value of the modelStatus parameter is saved, the model is uploaded.

  3. Deploy a model.

    1. Execute the following statement to deploy the model on PolarDB for AI:

      /*polar4ai*/ DEPLOY MODEL my_model;

      Sample result:

      Query OK, 0 rows affected (0.29 sec)
    2. Execute the following statement to query the status of the model.

      /*polar4ai*/ SHOW MODEL my_model;

      Sample result:

      +-------------+-----------------------------------------------------------------------------------------------------------------------------+
      | modelStatus | modelPath                                                                                                                   |
      +-------------+-----------------------------------------------------------------------------------------------------------------------------+
      | serving     | http://db4ai-collie-cn-hangzhou.oss-cn-hangzhou.aliyuncs.com/xxxxx.pkl?OSSAccessKeyId=xxxxxx&Expires=xxxx&Signature=xxxxxx  |
      +-------------+-----------------------------------------------------------------------------------------------------------------------------+
      1 row in set (0.23 sec)

      If the value of the modelStatus parameter is serving, the model is deployed.

  4. Implement online inference.

    Execute the following statement to use the model to perform an online inference task:

    /*polar4ai*/ SELECT Y FROM PREDICT(MODEL my_model, SELECT * FROM db4ai.regression_test LIMIT 10) WITH (x_cols = 'x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28', y_cols='');

    Sample result:

    +------+---------------------+
    | Y    | predicted_results   |
    +------+---------------------+
    |  1.0 | 0.6262147669037363  |
    |  0.0 | 0.5082804008241021  |
    |  0.0 | 0.37533158372209957 |
    |  1.0 | 0.461974928099089   |
    |  0.0 | 0.3777339456553666  |
    |  0.0 | 0.35045096227525735 |
    |  0.0 | 0.4178165504012342  |
    |  1.0 | 0.40869795422774036 |
    |  1.0 | 0.6826481286570045  |
    |  0.0 | 0.47021259543154736 |
    +------+---------------------+
    10 rows in set (0.95 sec)