All Products
Search
Document Center

Platform For AI:Official PAI images

Last Updated:May 09, 2024

Platform for AI (PAI) provides prebuilt images for multiple machine learning frameworks and Compute Unified Device Architecture (CUDA) versions. You can use the images to easily create an AI development environment in the Deep Learning Container (DLC), Elastic Algorithm Service (EAS), and Data Science Workshop (DSW) modules of PAI. This topic describes the official PAI images for mainstream frameworks and the common scenarios.

Naming rule

The name of an official PAI image follows a fixed format to encapsulate the essential information about the image. The following table describes the naming rule for official PAI images. We recommend that you use the same naming rule for custom images.

Sample name

Name breakdown

Module identifier

tensorflow:2.11-gpu-py39-cu112-ubuntu20.04

  • tensorflow:2.11: The training framework is TensorFlow 2.11.

  • gpu: The applicable instance type is GPU.

  • py39: The programming language is Python 3.9.

  • cu112: The supported CUDA version is 112.

  • ubuntu20.04: The supported operating system is Ubuntu 20.04.

The following identifiers may be used in the name of an official PAI image to indicate the applicable module of the image:

  • -training: applicable to the DLC module of PAI.

  • -inference: applicable to the EAS module of PAI.

  • -develop: applicable to the DSW module of PAI.

deeprec-develop:2302-tensorflow1.15-cpu-py36-ubuntu18.04

  • deeprec-develop:2302-tensorflow1.15: The training framework is TensorFlow 1.15 and DeepRec 2302.

  • cpu: The applicable instance type is CPU.

  • py36: The programming language is Python 3.6.

  • ubuntu18.04: The supported operating system is Ubuntu 18.04.

Images for mainstream frameworks

PAI provides prebuilt images for multiple machine learning frameworks. This section describes the official PAI images for mainstream frameworks. You can view the full list of official PAI images on the AI Computing Asset Management > Images page in the PAI console.

TensorFlow

Framework version

CUDA version (GPU only)

Operating system

  • TensorFlow2.6

  • TensorFlow2.3

  • TensorFlow2.21

  • TensorFlow2.11

  • TensorFlow 1.15 and TensorFlow 1.15.5

  • TensorFlow1.12

  • CUDA 114

  • CUDA 113

  • CUDA 112

  • CUDA 101

  • CUDA 100

  • Ubuntu 20.04

  • Ubuntu 18.04

TensorFlow Serving

Framework version

CUDA version (GPU only)

Operating system

  • TensorFlowServing2.11.1

  • TensorFlowServing1.15.0

  • CUDA 112

  • CUDA 100

  • Ubuntu 20.04

  • Ubuntu 18.04

  • Ubuntu 16.04

Pytorch

Framework version

CUDA version (GPU only)

Operating system

  • Pytorch2.1

  • Pytorch2.0

  • Pytorch1.8

  • Pytorch1.7

  • Pytorch1.12

  • Pytorch1.11

  • Pytorch1.10

  • CUDA 121

  • CUDA 117

  • CUDA 114

  • CUDA 113

  • CUDA 101

  • Ubuntu 22.04

  • Ubuntu 20.04

  • Ubuntu 18.04

DeepRec

Framework version

CUDA version (GPU only)

Operating system

  • DeepRec2302

  • DeepRec2212

CUDA 114

Ubuntu 18.04

XGBoost

Framework version

CUDA version (GPU only)

Operating system

XGBoost1.6.0

N/A (Only supports CPU)

Ubuntu 18.04

Triton Inference Server

Framework version

CUDA version (GPU only)

Operating system

  • TritonServer23.02

  • TritonServer21.09

  • CUDA 120

  • CUDA 114

Ubuntu 20.04

Images for common scenarios

Lingjun Intelligent Computing Service (Serverless Edition)

Image name

Framework

Instance type

CUDA version

Operating system

Supported region

Programming language and version

deepspeed-training:23.06-gpu-py310-cu121-ubuntu22.04

  • PyTorch 2.1

  • Megatron-LM 23.06

  • DeepSpeed 0.9.5

  • Transformers 4.29.2

  • Nemo 1.19.0

GPU

121

ubuntu22.04

China (Ulanqab)

Python3.10

megatron-training:23.06-gpu-py310-cu121-ubuntu22.04

  • PyTorch 2.1

  • Megatron-LM 23.06

  • DeepSpeed 0.9.5

  • Transformers 4.29.2

  • Nemo 1.19.0

GPU

121

ubuntu22.04

China (Ulanqab)

Python3.10

nemo-training:23.06-gpu-py310-cu121-ubuntu22.04

  • PyTorch 2.1

  • Megatron-LM 23.06

  • DeepSpeed 0.9.5

  • Transformers 4.29.2

  • Nemo 1.19.0

GPU

121

ubuntu22.04

China (Ulanqab)

Python3.10

Artificial Intelligence Generated Content (AIGC)

Image name

Framework

Instance type

CUDA version

Operating system

Supported region

Programming language and version

stable-diffusion-webui:3.0

StableDiffusionWebUI3.0

GPU

117

ubuntu22.04

  • China (Hangzhou)

  • China (Shanghai)

  • China (Beijing)

  • China (Zhangjiakou)

  • China (Ulanqab)

  • China (Shenzhen)

  • China (Heyuan)

  • China (Chengdu)

Python3.10

stable-diffusion-webui:2.2

StableDiffusionWebUI2.2

GPU

117

ubuntu22.04

Python3.10

stable-diffusion-webui:1.1

StableDiffusionWebUI1.1

GPU

117

ubuntu22.04

Python3.10

stable-diffusion-webui-env:pytorch1.13-gpu-py310-cu117-ubuntu22.04

SD-WebUI-ENV

GPU

117

ubuntu22.04

Python3.10

EAS deployment

The following table describes the official PAI images that you can use in EAS. To view the list of all images, go to the AI Computing Asset Management > Images page in the PAI console. The image addresses in the following table use the China (Hangzhou) region as an example.

Image name

Framework

Image description

Image address

chat-llm-webui:3.0-blade

  • Blade 0.4.3.dev118+gea4a4a1

  • PyTorch 2.1.0+cu118

  • Transformers 4.36.2

Uses Blade to implement inference services based on large language models (LLMs). The services can be accessed by using web applications or API endpoints.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/chat-llm-webui:3.0-blade

chatbot-langchain:1.0

ChatbotLangChain 1.0

Suitable for a chatbot service that uses LangChain to integrate an external knowledge base.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/chatbot-langchain:1.0

comfyui:0.2-api

ComfyUI 0.2

Contains ComfyUI and suitable for asynchronous API services used in text-to-image and image-to-image scenarios.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/comfyui:0.2

comfyui:0.2

ComfyUI 0.2

Contains ComfyUI and suitable for text-to-image and image-to-image scenarios.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/comfyui:0.2

comfyui:0.2-cluster

ComfyUI 0.2

Contains ComfyUI and suitable for text-to-image and image-to-image scenarios.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/comfyui:0.2

kohya_ss:2.2

Kohya 2.2

Uses Kohya to deploy applications based on fine-tuned Stable Diffusion models.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/kohya_ss:2.2

modelscope-inference:1.9.1

ModelScope 1.9.1

Suitable for Modelscope models.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/modelscope-inference:1.9.1

stable-diffusion-webui:4.2-cluster-webui

StableDiffusionWebUI 4.2

Contains Stable Diffusion WebUI and suitable for text-to-image and image-to-image scenarios. Services that are deployed by using this image support concurrent user access and resource isolation between users.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/stable-diffusion-webui:4.2

stable-diffusion-webui:4.2-api

StableDiffusionWebUI 4.2

Contains Stable Diffusion WebUI and suitable for asynchronous API services used in text-to-image and image-to-image scenarios.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/stable-diffusion-webui:4.2

stable-diffusion-webui:4.2-standard

StableDiffusionWebUI 4.2

Contains Stable Diffusion WebUI and suitable for text-to-image and image-to-image scenarios.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/stable-diffusion-webui:4.2

tensorflow-serving:2.14.1

TensorflowServing 2.14.1

Contains TensorFlow Serving and suitable for inference services based on TensorFlow models. This image supports only CPU instances.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/tensorflow_serving:2.14.1

tensorflow-serving:2.14.1-gpu

TensorflowServing 2.14.1

Contains TensorFlow Serving and suitable for inference services based on TensorFlow models. This image supports only GPU instances.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/tensorflow_serving:2.14.1-gpu

chat-llm-webui:3.0

  • PyTorch 2.0.1

  • Transformers 4.33.3

Uses HuggingFace to implement inference services based on LLMs. These services can be accessed by using web applications or API endpoints.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/chat-llm-webui:3.0

chat-llm-webui:3.0-vllm

  • PyTorch 2.1.2

  • Transformers 4.36.2

  • VLLM 0.2.7

Uses vLLM to implement inference services based on LLMs. These services can be accessed by using web applications or API endpoints.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/chat-llm-webui:3.0-vllm

huggingface-inference:1.0-transformers4.33

Transformers 4.33

Suitable for HuggingFace models.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/huggingface-inference:transformers-4.33

tritonserver:23.11-py3

TritonServer 23.11

Contains TritonServer and suitable for inference services.

eas-registry-vpc.cn-hangzhou.cr.aliyuncs.com/pai-eas/tritonserver:23.11-py3