The Feature Importance Filtering component provides the filtering feature for components including Linear Model Feature Importance, GBDT Feature Importance, and Random Forest Feature Importance. The Feature Importance Filtering component can be used to filter the top N features.
Configure the component
PAI command
PAI -name fe_filter_runner -project algo_public
-DselectedCols=pdays,previous,emp_var_rate,cons_price_idx,cons_conf_idx,euribor3m,nr_employed,age,campaign,poutcome
-DinputTable=pai_dense_10_10
-DweightTable=pai_temp_2252_20319_1
-DtopN=5
-DmodelTable=pai_temp_2252_20320_2
-DoutputTable=pai_temp_2252_20320_1;
Parameter | Description | Required |
---|---|---|
inputTable | The name of the input table. | Yes |
inputTablePartitions | By default, all partitions in the input table are selected. Specify this parameter
in one of the following formats:
|
No |
weightTable | The weight tables of the feature importance. The weight tables are the output tables of Linear Model Feature Importance, GBDT Feature Importance, and Random Forest Feature Importance. | Yes |
outputTable | The output table after the top N features are filtered. | Yes |
modelTable | The model file generated by feature filtering. | Yes |
selectedCols | By default, all the fields in the input table are selected. | No |
topN | The top N features that are filtered. Default value: 10.
Note The value of this parameter must be a positive integer.
|
No |
lifecycle | The lifecycle of the output table. Default value: 7.
Note The value of this parameter must be a positive integer.
|
No |