The Qwen image editing models support multi-image input and output. They can accurately modify text in an image, add or remove objects, adjust a subject's pose, transfer an image style, and enhance image details.
Model overview
Input image 1 | Input image 2 | Input image 3 | Output images (multiple images) | |
|
|
|
|
|
Input prompt: The girl in Image 1 wears the black dress from Image 2 and sits in the pose from Image 3.
Model | Description | Output image specifications |
qwen-image-edit-max Currently has the same capabilities as qwen-image-edit-max-2026-01-16 | Supports single-image editing and multi-image fusion.
| Format: PNG
|
qwen-image-edit-max-2026-01-16 | ||
qwen-image-edit-plus Currently has the same capabilities as qwen-image-edit-plus-2025-10-30 | ||
qwen-image-edit-plus-2025-12-15 | ||
qwen-image-edit-plus-2025-10-30 | ||
qwen-image-edit | Supports single-image editing and multi-image fusion.
| Format: PNG. Resolution: Not customizable. The output resolution follows the default behavior described above. |
Before calling the API, see the Models for each region.
Prerequisites
Before making a call, obtain an API key and set the API key as an environment variable.
To call the API using the SDK, install the DashScope SDK. The SDK is available for Python and Java.
The Beijing and Singapore regions have separate API keys and request endpoints. Do not use them interchangeably. Cross-region calls result in authentication failures or service errors.
HTTP
Singapore: POST https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation
Beijing: POST https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation
Request parameters | Single-image editingThis example shows how to use the Multi-image fusionThis example shows how to use the |
Headers | |
Content-Type The content type of the request. You must set this parameter to | |
Authorization The authentication credentials. This API uses a Model Studio API key for authentication. For example, `Bearer sk-xxxx`. | |
Request body | |
model The model name. Example value: | |
input The input object, which contains the following fields: | |
parameters Additional parameters to control image generation. |
Response parameters | Successful ResponseTask data, such as the task status and image URLs, is retained for only 24 hours and is then automatically purged. You must save the generated images promptly. Error ResponseIf a task fails, the response returns relevant information. You can identify the cause of the failure from the code and message fields. For more information about how to resolve errors, see Error codes. |
output The results generated by the model. | |
usage The resource usage for this request. This parameter is returned only when the request is successful. | |
request_id The unique request ID. You can use this ID to trace and troubleshoot issues. | |
code The error code. This parameter is returned only when the request fails. For more information, see Error messages. | |
message A detailed error message. This parameter is returned only when the request fails. For more information, see Error messages. |
DashScope SDK
The SDK parameter names are mostly consistent with the HTTP API. For a complete list of parameters, see the Qwen API reference.
Python SDK
Install the latest version of the DashScope Python SDK. Otherwise, runtime errors may occur: Install or upgrade the SDK.
Asynchronous APIs are not supported.
Request examples
This example uses the qwen-image-edit-max model to generate two images.
Pass an image using a public URL
import json
import os
import dashscope
from dashscope import MultiModalConversation
# The following is the URL for the Singapore region. If you use a model in the Beijing region, replace the URL with: https://dashscope.aliyuncs.com/api/v1
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'
# The model supports one to three input images.
messages = [
{
"role": "user",
"content": [
{"image": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20250925/thtclx/input1.png"},
{"image": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20250925/iclsnx/input2.png"},
{"image": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20250925/gborgw/input3.png"},
{"text": "Make the girl from Image 1 wear the black dress from Image 2 and sit in the pose from Image 3."}
]
}
]
# The Singapore and Beijing regions use separate API keys. Get an API key: https://www.alibabacloud.com/help/en/model-studio/get-api-key
# Replace with your API key if the environment variable is not set: api_key="sk-xxx"
api_key = os.getenv("DASHSCOPE_API_KEY")
# qwen-image-edit-max and qwen-image-edit-plus series support outputting 1 to 6 images. This example shows how to output 2 images.
response = MultiModalConversation.call(
api_key=api_key,
model="qwen-image-edit-max",
messages=messages,
stream=False,
n=2,
watermark=False,
negative_prompt=" ",
prompt_extend=True,
size="1024*1536",
)
if response.status_code == 200:
# To view the full response, uncomment the following line.
# print(json.dumps(response, ensure_ascii=False))
for i, content in enumerate(response.output.choices[0].message.content):
print(f"URL of output image {i+1}: {content['image']}")
else:
print(f"HTTP status code: {response.status_code}")
print(f"Error code: {response.code}")
print(f"Error message: {response.message}")
print("For more information, see the documentation: https://www.alibabacloud.com/help/en/model-studio/error-code")
Pass an image using Base64 encoding
import json
import os
import dashscope
from dashscope import MultiModalConversation
import base64
import mimetypes
# The following is the URL for the Singapore region. If you use a model in the Beijing region, replace the URL with: https://dashscope.aliyuncs.com/api/v1
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'
# --- For Base64 encoding ---
# Format: data:{mime_type};base64,{base64_data}
def encode_file(file_path):
mime_type, _ = mimetypes.guess_type(file_path)
if not mime_type or not mime_type.startswith("image/"):
raise ValueError("Unsupported or unrecognized image format")
try:
with open(file_path, "rb") as image_file:
encoded_string = base64.b64encode(
image_file.read()).decode('utf-8')
return f"data:{mime_type};base64,{encoded_string}"
except IOError as e:
raise IOError(f"Error reading file: {file_path}, Error: {str(e)}")
# Get the Base64 encoding of the image.
# Call the encoding function. Replace "/path/to/your/image.png" with the path to your local image file.
image = encode_file("/path/to/your/image.png")
messages = [
{
"role": "user",
"content": [
{"image": image},
{"text": "Generate an image that matches the depth map, following this description: A dilapidated red bicycle is parked on a muddy path with a dense primeval forest in the background."}
]
}
]
# The Singapore and Beijing regions use separate API keys. Get an API key: https://www.alibabacloud.com/help/en/model-studio/get-api-key
# Replace with your API key if the environment variable is not set: api_key="sk-xxx"
api_key = os.getenv("DASHSCOPE_API_KEY")
# qwen-image-edit-max and qwen-image-edit-plus series support outputting 1 to 6 images. This example shows how to output 2 images.
response = MultiModalConversation.call(
api_key=api_key,
model="qwen-image-edit-max",
messages=messages,
stream=False,
n=2,
watermark=False,
negative_prompt=" ",
prompt_extend=True,
size="1920*1080",
)
if response.status_code == 200:
# To view the full response, uncomment the following line.
# print(json.dumps(response, ensure_ascii=False))
for i, content in enumerate(response.output.choices[0].message.content):
print(f"URL of output image {i+1}: {content['image']}")
else:
print(f"HTTP status code: {response.status_code}")
print(f"Error code: {response.code}")
print(f"Error message: {response.message}")
print("For more information, see the documentation: https://www.alibabacloud.com/help/en/model-studio/error-code")
Download an image from a URL
# Install the requests library first: pip install requests
import requests
def download_image(image_url, save_path='output.png'):
try:
response = requests.get(image_url, stream=True, timeout=300) # Set timeout
response.raise_for_status() # Raise an exception if the HTTP status code is not 200.
with open(save_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Image downloaded successfully to: {save_path}")
except requests.exceptions.RequestException as e:
print(f"Image download failed: {e}")
image_url = "https://dashscope-result-sz.oss-cn-shenzhen.aliyuncs.com/xxx.png?Expires=xxx"
download_image(image_url, save_path='output.png')
Response example
The image link is valid for 24 hours. Download the image promptly.
input_tokensandoutput_tokensare compatibility fields, currently fixed at 0.
{
"status_code": 200,
"request_id": "fa41f9f9-3cb6-434d-a95d-4ae6b9xxxxxx",
"code": "",
"message": "",
"output": {
"text": null,
"finish_reason": null,
"choices": [
{
"finish_reason": "stop",
"message": {
"role": "assistant",
"content": [
{
"image": "https://dashscope-result-hz.oss-cn-hangzhou.aliyuncs.com/xxx.png?Expires=xxx"
},
{
"image": "https://dashscope-result-hz.oss-cn-hangzhou.aliyuncs.com/xxx.png?Expires=xxx"
}
]
}
}
],
"audio": null
},
"usage": {
"input_tokens": 0,
"output_tokens": 0,
"characters": 0,
"height": 1536,
"image_count": 2,
"width": 1024
}
}Java SDK
Install the latest version of the DashScope Java SDK. Otherwise, a runtime error may occur: Install or upgrade the SDK.
Request examples
The following example shows how to use the qwen-image-edit-max model to generate two images.
Pass an image using a public URL
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.JsonUtils;
import com.alibaba.dashscope.utils.Constants;
import java.io.IOException;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.List;
public class QwenImageEdit {
static {
// The following URL is for the Singapore region. If you use a model in the Beijing region, replace the URL with https://dashscope.aliyuncs.com/api/v1.
Constants.baseHttpApiUrl = "https://dashscope-intl.aliyuncs.com/api/v1";
}
// The Singapore and Beijing regions use separate API keys. To obtain an API key, visit https://www.alibabacloud.com/help/en/model-studio/get-api-key.
// If you have not configured the environment variable, replace the following line with your Model Studio API key: apiKey="sk-xxx"
static String apiKey = System.getenv("DASHSCOPE_API_KEY");
public static void call() throws ApiException, NoApiKeyException, UploadFileException, IOException {
MultiModalConversation conv = new MultiModalConversation();
// The model supports one to three input images.
MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
.content(Arrays.asList(
Collections.singletonMap("image", "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20250925/thtclx/input1.png"),
Collections.singletonMap("image", "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20250925/iclsnx/input2.png"),
Collections.singletonMap("image", "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20250925/gborgw/input3.png"),
Collections.singletonMap("text", "Make the girl from Image 1 wear the black dress from Image 2 and sit in the pose from Image 3.")
)).build();
// qwen-image-edit-max and qwen-image-edit-plus support outputting 1 to 6 images. This example shows how to output 2 images.
Map<String, Object> parameters = new HashMap<>();
parameters.put("watermark", false);
parameters.put("negative_prompt", " ");
parameters.put("n", 2);
parameters.put("prompt_extend", true);
parameters.put("size", "1024*1536");
MultiModalConversationParam param = MultiModalConversationParam.builder()
.apiKey(apiKey)
.model("qwen-image-edit-max")
.messages(Collections.singletonList(userMessage))
.parameters(parameters)
.build();
MultiModalConversationResult result = conv.call(param);
// To view the complete response, uncomment the following line.
// System.out.println(JsonUtils.toJson(result));
List<Map<String, Object>> contentList = result.getOutput().getChoices().get(0).getMessage().getContent();
int imageIndex = 1;
for (Map<String, Object> content : contentList) {
if (content.containsKey("image")) {
System.out.println("URL of output image " + imageIndex + ": " + content.get("image"));
imageIndex++;
}
}
}
public static void main(String[] args) {
try {
call();
} catch (ApiException | NoApiKeyException | UploadFileException | IOException e) {
System.out.println(e.getMessage());
}
}
}Pass an image using Base64 encoding
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.JsonUtils;
import com.alibaba.dashscope.utils.Constants;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.Base64;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.List;
public class QwenImageEdit {
static {
// The following URL is for the Singapore region. If you use a model in the Beijing region, replace the URL with https://dashscope.aliyuncs.com/api/v1.
Constants.baseHttpApiUrl = "https://dashscope-intl.aliyuncs.com/api/v1";
}
// The Singapore and Beijing regions use separate API keys. To obtain an API key, visit https://www.alibabacloud.com/help/en/model-studio/get-api-key.
// If you have not configured the environment variable, replace the following line with your Model Studio API key: apiKey="sk-xxx"
static String apiKey = System.getenv("DASHSCOPE_API_KEY");
public static void call() throws ApiException, NoApiKeyException, UploadFileException, IOException {
// Replace "/path/to/your/image.png" with the path to your local image file.
String image = encodeFile("/path/to/your/image.png");
MultiModalConversation conv = new MultiModalConversation();
MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
.content(Arrays.asList(
Collections.singletonMap("image", image),
Collections.singletonMap("text", "Generate an image that matches the depth map, following this description: A dilapidated red bicycle is parked on a muddy path with a dense primeval forest in the background.")
)).build();
// qwen-image-edit-max and qwen-image-edit-plus support outputting 1 to 6 images. This example shows how to output 2 images.
Map<String, Object> parameters = new HashMap<>();
parameters.put("watermark", false);
parameters.put("negative_prompt", " ");
parameters.put("n", 2);
parameters.put("prompt_extend", true);
parameters.put("size", "1536*1024");
MultiModalConversationParam param = MultiModalConversationParam.builder()
.apiKey(apiKey)
.model("qwen-image-edit-max")
.messages(Collections.singletonList(userMessage))
.parameters(parameters)
.build();
MultiModalConversationResult result = conv.call(param);
// To view the complete response, uncomment the following line.
// System.out.println(JsonUtils.toJson(result));
List<Map<String, Object>> contentList = result.getOutput().getChoices().get(0).getMessage().getContent();
int imageIndex = 1;
for (Map<String, Object> content : contentList) {
if (content.containsKey("image")) {
System.out.println("URL of output image " + imageIndex + ": " + content.get("image"));
imageIndex++;
}
}
}
/**
* Encodes a file into a Base64 string.
* @param filePath The file path.
* @return A Base64 string in the format: data:{mime_type};base64,{base64_data}
*/
public static String encodeFile(String filePath) {
Path path = Paths.get(filePath);
if (!Files.exists(path)) {
throw new IllegalArgumentException("File does not exist: " + filePath);
}
// Detect the MIME type.
String mimeType = null;
try {
mimeType = Files.probeContentType(path);
} catch (IOException e) {
throw new IllegalArgumentException("Unable to detect the file type: " + filePath);
}
if (mimeType == null || !mimeType.startsWith("image/")) {
throw new IllegalArgumentException("Unsupported or unrecognized image format.");
}
// Read the file content and encode it.
byte[] fileBytes = null;
try{
fileBytes = Files.readAllBytes(path);
} catch (IOException e) {
throw new IllegalArgumentException("Unable to read the file content: " + filePath);
}
String encodedString = Base64.getEncoder().encodeToString(fileBytes);
return "data:" + mimeType + ";base64," + encodedString;
}
public static void main(String[] args) {
try {
call();
} catch (ApiException | NoApiKeyException | UploadFileException | IOException e) {
System.out.println(e.getMessage());
}
}
}Download an image from a URL
import java.io.FileOutputStream;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;
public class ImageDownloader {
public static void downloadImage(String imageUrl, String savePath) {
try {
URL url = new URL(imageUrl);
HttpURLConnection connection = (HttpURLConnection) url.openConnection();
connection.setConnectTimeout(5000);
connection.setReadTimeout(300000);
connection.setRequestMethod("GET");
InputStream inputStream = connection.getInputStream();
FileOutputStream outputStream = new FileOutputStream(savePath);
byte[] buffer = new byte[8192];
int bytesRead;
while ((bytesRead = inputStream.read(buffer)) != -1) {
outputStream.write(buffer, 0, bytesRead);
}
inputStream.close();
outputStream.close();
System.out.println("Image downloaded successfully to: " + savePath);
} catch (Exception e) {
System.err.println("Image download failed: " + e.getMessage());
}
}
public static void main(String[] args) {
String imageUrl = "http://dashscope-result-bj.oss-cn-beijing.aliyuncs.com/xxx?Expires=xxx";
String savePath = "output.png";
downloadImage(imageUrl, savePath);
}
}Response example
The image link is valid for 24 hours. Download the image promptly.
{
"requestId": "46281da9-9e02-941c-ac78-be88b8xxxxxx",
"usage": {
"image_count": 2,
"width": 1024,
"height": 1536
},
"output": {
"choices": [
{
"finish_reason": "stop",
"message": {
"role": "assistant",
"content": [
{
"image": "https://dashscope-result-sz.oss-cn-shenzhen.aliyuncs.com/xxx.png?Expires=xxx"
},
{
"image": "https://dashscope-result-sz.oss-cn-shenzhen.aliyuncs.com/xxx.png?Expires=xxx"
}
]
}
}
]
}
}Configure image access permissions
Images generated by the model are stored in Object Storage Service (OSS). Each generated image is assigned a publicly accessible OSS link, such as https://dashscope-result-xx.oss-cn-xxxx.aliyuncs.com/xxx.png. You can use this link to view or download the image, but it expires after 24 hours.
If your security policies restrict access to public OSS links, add the following domain names to your whitelist to ensure you can access the generated images.
dashscope-result-bj.oss-cn-beijing.aliyuncs.com
dashscope-result-hz.oss-cn-hangzhou.aliyuncs.com
dashscope-result-sh.oss-cn-shanghai.aliyuncs.com
dashscope-result-wlcb.oss-cn-wulanchabu.aliyuncs.com
dashscope-result-zjk.oss-cn-zhangjiakou.aliyuncs.com
dashscope-result-sz.oss-cn-shenzhen.aliyuncs.com
dashscope-result-hy.oss-cn-heyuan.aliyuncs.com
dashscope-result-cd.oss-cn-chengdu.aliyuncs.com
dashscope-result-gz.oss-cn-guangzhou.aliyuncs.com
dashscope-result-wlcb-acdr-1.oss-cn-wulanchabu-acdr-1.aliyuncs.comError codes
If a call fails, see Error messages for troubleshooting.
Billing and rate limiting
For model pricing and free quotas, see Model List and Pricing.
For throttling limits, see Rate limits.
Billing description: You are charged based on the number of images that are successfully generated. Failed model calls or processing errors do not incur fees or consume the free quota.
FAQ
Q: What languages do the Qwen image editing models support?
A: They officially support Simplified Chinese and English. Other languages may work, but results are not guaranteed.
Q: When uploading multiple reference images with different aspect ratios, how is the output aspect ratio determined?
A: By default, the output image's aspect ratio matches that of the last image in the input array. This behavior can be overridden by specifying the parameters.size parameter.
Q: How do I view model usage?
A: For more information, see Bill query and cost management.




