All Products
Search
Document Center

MaxCompute:WordCount example

Last Updated:Sep 05, 2024

This topic describes an example of running WordCount in MapReduce.

Prerequisites

Complete the environment configuration for testing, see Getting started.

Preparations

  1. Prepare the JAR package of the test program. In this topic, the JAR package is named mapreduce-examples.jar and stored in the bin\data\resources directory in the local installation path of MaxCompute.

    1. Create test tables.

      CREATE TABLE wc_in (key STRING, value STRING);
      CREATE TABLE wc_out (key STRING, cnt BIGINT);
    2. Add test resources.

      -- When adding the JAR package for the first time, you can ignore the -f flag.
      add jar data\resources\mapreduce-examples.jar -f;
  2. Use Tunnel to import the data.txt file from the bin directory of the MaxCompute client into the wc_in table.

    tunnel upload data.txt wc_in;

    The following data is imported to the wc_in table:

    hello,odps

Procedure

Run WordCount on the MaxCompute client.

jar -resources mapreduce-examples.jar -classpath data\resources\mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.WordCount wc_in wc_out

Expected result

The job runs normally. The following data is returned in the wc_out table:

+------------+------------+
| key        | cnt        |
+------------+------------+
| hello      | 1          |
| odps       | 1          |
+------------+------------+

Sample code

For information about Project Object Model (POM) dependencies, see Precautions.

package com.aliyun.odps.mapred.open.example;
import java.io.IOException;
import java.util.Iterator;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.mapred.JobClient;
import com.aliyun.odps.mapred.MapperBase;
import com.aliyun.odps.mapred.ReducerBase;
import com.aliyun.odps.mapred.conf.JobConf;
import com.aliyun.odps.mapred.utils.InputUtils;
import com.aliyun.odps.mapred.utils.OutputUtils;
import com.aliyun.odps.mapred.utils.SchemaUtils;
public class WordCount {
    public static class TokenizerMapper extends MapperBase {
        private Record word;
        private Record one;
        @Override
            public void setup(TaskContext context) throws IOException {
            word = context.createMapOutputKeyRecord();
            one = context.createMapOutputValueRecord();
            one.set(new Object[] { 1L });
            System.out.println("TaskID:" + context.getTaskID().toString());
        }
        @Override
            public void map(long recordNum, Record record, TaskContext context)
            throws IOException {
            for (int i = 0; i < record.getColumnCount(); i++) {
                word.set(new Object[] { record.get(i).toString() });
                context.write(word, one);
            }
        }
    }
    /**
       * A combiner class that combines map output by sum them.
       **/
    public static class SumCombiner extends ReducerBase {
        private Record count;
        @Override
            public void setup(TaskContext context) throws IOException {
            count = context.createMapOutputValueRecord();
        }
        /** The combiner implements the same interface as that of the reducer. The combiner allows you to immediately run a local reduce job on the mapper to reduce the output of the mapper. */
        @Override
            public void reduce(Record key, Iterator<Record> values, TaskContext context)
            throws IOException {
            long c = 0;
            while (values.hasNext()) {
                Record val = values.next();
                c += (Long) val.get(0);
            }
            count.set(0, c);
            context.write(key, count);
        }
    }
    /**
       * A reducer class that just emits the sum of the input values.
       **/
    public static class SumReducer extends ReducerBase {
        private Record result = null;
        @Override
            public void setup(TaskContext context) throws IOException {
            result = context.createOutputRecord();
        }
        @Override
            public void reduce(Record key, Iterator<Record> values, TaskContext context)
            throws IOException {
            long count = 0;
            while (values.hasNext()) {
                Record val = values.next();
                count += (Long) val.get(0);
            }
            result.set(0, key.get(0));
            result.set(1, count);
            context.write(result);
        }
    }
    public static void main(String[] args) throws Exception {
        if (args.length != 2) {
            System.err.println("Usage: WordCount <in_table> <out_table>");
            System.exit(2);
        }
        JobConf job = new JobConf();
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(SumCombiner.class);
        job.setReducerClass(SumReducer.class);
        /** Configure the schema that defines the intermediate output of the mapper as key-value pairs. The intermediate output of the mapper exists as records. */
        job.setMapOutputKeySchema(SchemaUtils.fromString("word:string"));
        job.setMapOutputValueSchema(SchemaUtils.fromString("count:bigint"));
        /** Configure information about input and output tables. */
        InputUtils.addTable(TableInfo.builder().tableName(args[0]).build(), job);
        OutputUtils.addTable(TableInfo.builder().tableName(args[1]).build(), job);
        JobClient.runJob(job);
    }
}