All Products
Search
Document Center

Hologres:Test plan

Last Updated:Aug 22, 2024

This topic describes how to use TPC Benchmark H (TPC-H) to test the performance of online analytical processing (OLAP) queries and point queries of key-value pairs.

About TPC-H

The following description is quoted from the TPC Benchmark™ H (TPC-H) specification:

TPC-H is a decision support benchmark that consists of a suite of business-oriented ad hoc queries and concurrent data modifications. The queries and the data populating the database have been chosen to have broad industry-wide relevance. This benchmark illustrates decision support systems that examine large volumes of data, execute queries with a high degree of complexity, and give answers to critical business questions.

For more information, see TPC Benchmark™ H Standard Specification.

Note

The TPC-H performance tests described in this topic are implemented based on the TPC-H benchmark test but cannot meet all requirements of the TPC-H benchmark test. Therefore, the test results described in this topic cannot be compared with the published results of the TPC-H benchmark test.

Datasets

TPC-H is a test set developed by the Transaction Processing Performance Council (TPC) to simulate decision support systems. TPC-H is used in academia and industries to evaluate the performance of decision support systems.

TPC-H models data in production environments to simulate the data warehouse of a sales system. The data warehouse consists of eight tables. The size of each table ranges from 1 GB to 3 TB. The TPC-H benchmark test involves 22 query statements. The test focuses on the response time of each query, which is the amount of time required from submitting a query to receiving the returned result. The test results can comprehensively reflect the capability of the system to process queries. For more information, see TPC BENCHMARK H Standard Specification.

Scenarios

In this topic, the following tests are performed:

The amount of test data affects the test results. The data generation tool of TPC-H allows you to change the scale factor (SF) to adjust the amount of data to be generated. One SF indicates 1 GB of data.

Note

The preceding data amount refers to the amount of raw data. When you prepare the test environment, you must also consider other factors such as the space to be occupied by indexes.

Precautions

To reduce the variables that may have impacts on test results, we recommend that you use new instances each time you perform the tests described in this topic, instead of upgrading or downgrading the specifications of existing instances, to meet the test requirements.

Performance test on OLAP queries

  1. Make preparations.

    Prepare the basic environment for the test on OLAP queries.

    1. Purchase a Hologres instance. For more information, see Purchase a Hologres instance. In this example, an exclusive pay-as-you-go instance is used. The instance is used only for testing and is configured with 96 CPU cores and 384 GB of memory. You can also configure computing resources based on your business requirements.

    2. Create an Elastic Compute Service (ECS) instance. For more information, see Creation methods. The following table describes the specifications of the ECS instance that is used in this topic.

      Item

      Specification

      Instance type

      ecs.g6.4xlarge

      Image

      Alibaba Cloud Linux 3.2104 LTS 64-bit

      Data disk

      An Enterprise SSD (ESSD) is used. You can determine the capacity based on the amount of data used in the test.

  2. Download and configure the benchmark test package for Hologres.

    1. Log on to the ECS instance. For more information, see the "Connect to an instance" section in Create and manage an ECS instance in the console (express version).

    2. Install the PostgreSQL client.

      yum update -y
      yum install postgresql-server -y
      yum install postgresql-contrib -y
    3. Download and decompress the benchmark test package for Hologres.

      wget https://oss-tpch.oss-cn-hangzhou.aliyuncs.com/hologres_benchmark.tar.gz
      tar xvf hologres_benchmark.tar.gz
    4. Go to the Hologres benchmark directory.

      cd hologres_benchmark
    5. Run the vim group_vars/all command and configure the parameters required by the benchmark test.

      # db config
      login_host: ""
      login_user: ""
      login_password: "" 
      login_port: ""
      
      # benchmark run cluster: hologres
      cluster: "hologres"
      RUN_MODE: "HOTRUN"
      
      # benchmark config
      scale_factor: 1
      work_dir_root: /your/working_dir/benchmark/workdirs
      dataset_generate_root_path: /your/working_dir/benchmark/datasets

      The following table describes the parameters.

      Type

      Parameter

      Description

      Hologres connection parameters

      login_host

      The virtual private cloud (VPC) endpoint of the Hologres instance.

      You can log on to the Hologres console, go to the Instance Details page, and obtain the VPC endpoint in the Endpoint column in the Network Information section.

      Note

      The endpoint does not contain the port number. Example: hgpostcn-cn-nwy364b5v009-cn-shanghai-vpc-st.hologres.aliyuncs.com.

      login_port

      The port number of the VPC in which the Hologres instance resides.

      You can log on to the Hologres console, go to the Instance Details page, and obtain the port number of the VPC endpoint in the Endpoint column in the Network Information section.

      login_user

      The AccessKey ID of your Alibaba Cloud account.

      You can obtain the AccessKey ID from the AccessKey Pair page.

      login_password

      The AccessKey secret of your Alibaba Cloud account.

      Benchmark test configuration parameters

      scale_factor

      The SF of the dataset, which controls the amount of data to be generated. Default value: 1. Unit: GB.

      work_dir_root

      The root directory of the working directory. The root directory is used to store data such as table creation statements and other SQL statements for TPC-H tests. The default directory is /your/working_dir/benchmark/workdirs.

      dataset_generate_root_path

      The path in which the generated test dataset is stored. The default path is /your/working_dir/benchmark/datasets.

  3. Run the following command to enable an end-to-end automatic TPC-H test.

    The end-to-end TPC-H test includes generating data, creating a test database, creating a table, and importing data to the table. The test database is named in the tpc_h_sf<scale_factor> format, such as tpc_h_sf1000.

    bin/run_tpch.sh

    You can also run the following command to perform the TPC-H query test.

    bin/run_tpch.sh query
  4. View the test result.

    • Check the overview of the test result.

      After the bin/run_tpch.sh command is run, the test result is displayed. Sample test result:

      TASK [tpc_h : debug] **************************************************************************************************
      skipping: [worker-1]
      ok: [master] => {
          "command_output.stdout_lines": [
              "[info] 2024-06-28 14:46:09.768 | Run sql queries started.",
              "[info] 2024-06-28 14:46:09.947 | Run q10.sql started.",
              "[info] 2024-06-28 14:46:10.088 | Run q10.sql finished. Time taken: 0:00:00, 138 ms",
              "[info] 2024-06-28 14:46:10.239 | Run q11.sql started.",
              "[info] 2024-06-28 14:46:10.396 | Run q11.sql finished. Time taken: 0:00:00, 154 ms",
              "[info] 2024-06-28 14:46:10.505 | Run q12.sql started.",
              "[info] 2024-06-28 14:46:10.592 | Run q12.sql finished. Time taken: 0:00:00, 85 ms",
              "[info] 2024-06-28 14:46:10.703 | Run q13.sql started.",
              "[info] 2024-06-28 14:46:10.793 | Run q13.sql finished. Time taken: 0:00:00, 88 ms",
              "[info] 2024-06-28 14:46:10.883 | Run q14.sql started.",
              "[info] 2024-06-28 14:46:10.981 | Run q14.sql finished. Time taken: 0:00:00, 95 ms",
              "[info] 2024-06-28 14:46:11.132 | Run q15.sql started.",
              "[info] 2024-06-28 14:46:11.266 | Run q15.sql finished. Time taken: 0:00:00, 131 ms",
              "[info] 2024-06-28 14:46:11.441 | Run q16.sql started.",
              "[info] 2024-06-28 14:46:11.609 | Run q16.sql finished. Time taken: 0:00:00, 165 ms",
              "[info] 2024-06-28 14:46:11.728 | Run q17.sql started.",
              "[info] 2024-06-28 14:46:11.818 | Run q17.sql finished. Time taken: 0:00:00, 88 ms",
              "[info] 2024-06-28 14:46:12.017 | Run q18.sql started.",
              "[info] 2024-06-28 14:46:12.184 | Run q18.sql finished. Time taken: 0:00:00, 164 ms",
              "[info] 2024-06-28 14:46:12.287 | Run q19.sql started.",
              "[info] 2024-06-28 14:46:12.388 | Run q19.sql finished. Time taken: 0:00:00, 98 ms",
              "[info] 2024-06-28 14:46:12.503 | Run q1.sql started.",
              "[info] 2024-06-28 14:46:12.597 | Run q1.sql finished. Time taken: 0:00:00, 93 ms",
              "[info] 2024-06-28 14:46:12.732 | Run q20.sql started.",
              "[info] 2024-06-28 14:46:12.888 | Run q20.sql finished. Time taken: 0:00:00, 154 ms",
              "[info] 2024-06-28 14:46:13.184 | Run q21.sql started.",
              "[info] 2024-06-28 14:46:13.456 | Run q21.sql finished. Time taken: 0:00:00, 269 ms",
              "[info] 2024-06-28 14:46:13.558 | Run q22.sql started.",
              "[info] 2024-06-28 14:46:13.657 | Run q22.sql finished. Time taken: 0:00:00, 97 ms",
              "[info] 2024-06-28 14:46:13.796 | Run q2.sql started.",
              "[info] 2024-06-28 14:46:13.935 | Run q2.sql finished. Time taken: 0:00:00, 136 ms",
              "[info] 2024-06-28 14:46:14.051 | Run q3.sql started.",
              "[info] 2024-06-28 14:46:14.155 | Run q3.sql finished. Time taken: 0:00:00, 101 ms",
              "[info] 2024-06-28 14:46:14.255 | Run q4.sql started.",
              "[info] 2024-06-28 14:46:14.341 | Run q4.sql finished. Time taken: 0:00:00, 83 ms",
              "[info] 2024-06-28 14:46:14.567 | Run q5.sql started.",
              "[info] 2024-06-28 14:46:14.799 | Run q5.sql finished. Time taken: 0:00:00, 230 ms",
              "[info] 2024-06-28 14:46:14.881 | Run q6.sql started.",
              "[info] 2024-06-28 14:46:14.950 | Run q6.sql finished. Time taken: 0:00:00, 67 ms",
              "[info] 2024-06-28 14:46:15.138 | Run q7.sql started.",
              "[info] 2024-06-28 14:46:15.320 | Run q7.sql finished. Time taken: 0:00:00, 180 ms",
              "[info] 2024-06-28 14:46:15.572 | Run q8.sql started.",
              "[info] 2024-06-28 14:46:15.831 | Run q8.sql finished. Time taken: 0:00:00, 256 ms",
              "[info] 2024-06-28 14:46:16.081 | Run q9.sql started.",
              "[info] 2024-06-28 14:46:16.322 | Run q9.sql finished. Time taken: 0:00:00, 238 ms",
              "[info] 2024-06-28 14:46:16.325 | ----------- HOT RUN finished. Time taken: 3255 mill_sec -----------------"
          ]
      }
      skipping: [worker-2]
      skipping: [worker-3]
      skipping: [worker-4]
      
      TASK [tpc_h : clear Env] **********************************************************************************************
      skipping: [worker-1]
      skipping: [worker-2]
      skipping: [worker-3]
      skipping: [worker-4]
      ok: [master]
      
      TASK [tpc_h : debug] **************************************************************************************************
      ok: [master] => {
          "work_dir": "/your/working_dir/benchmark/workdirs/tpc_h/sf1"
      }
      skipping: [worker-1]
      skipping: [worker-2]
      skipping: [worker-3]
      skipping: [worker-4]
    • View the details of the test result.

      After the bin/run_tpch.sh command is successfully run, the system builds the working directory of the entire TPC-H benchmark test and returns the path of the <work_dir> directory. You can switch to this path to view the relevant information, such as query statements, table creation statements, and runtime logs. The following figure shows an example.

      image

      You can also run the cd <work_dir>/logs command to go to the logs directory in the working directory, and view the test result and the detailed execution results of SQL statements.

      The following code shows the structure of the <work_dir> directory.

      working_dir/
      `-- benchmark
          |-- datasets
          |   `-- tpc_h
          |       `-- sf1
          |           |-- worker-1
          |           |   |-- customer.tbl
          |           |   `-- lineitem.tbl
          |           |-- worker-2
          |           |   |-- orders.tbl
          |           |   `-- supplier.tbl
          |           |-- worker-3
          |           |   |-- nation.tbl
          |           |   `-- partsupp.tbl
          |           `-- worker-4
          |               |-- part.tbl
          |               `-- region.tbl
          `-- workdirs
              `-- tpc_h
                  `-- sf1
                      |-- config
                      |-- hologres
                      |   |-- logs
                      |   |   |-- q10.sql.err
                      |   |   |-- q10.sql.out
                      |   |   |-- q11.sql.err
                      |   |   |-- q11.sql.out
                      |   |   |-- q12.sql.err
                      |   |   |-- q12.sql.out
                      |   |   |-- q13.sql.err
                      |   |   |-- q13.sql.out
                      |   |   |-- q14.sql.err
                      |   |   |-- q14.sql.out
                      |   |   |-- q15.sql.err
                      |   |   |-- q15.sql.out
                      |   |   |-- q16.sql.err
                      |   |   |-- q16.sql.out
                      |   |   |-- q17.sql.err
                      |   |   |-- q17.sql.out
                      |   |   |-- q18.sql.err
                      |   |   |-- q18.sql.out
                      |   |   |-- q19.sql.err
                      |   |   |-- q19.sql.out
                      |   |   |-- q1.sql.err
                      |   |   |-- q1.sql.out
                      |   |   |-- q20.sql.err
                      |   |   |-- q20.sql.out
                      |   |   |-- q21.sql.err
                      |   |   |-- q21.sql.out
                      |   |   |-- q22.sql.err
                      |   |   |-- q22.sql.out
                      |   |   |-- q2.sql.err
                      |   |   |-- q2.sql.out
                      |   |   |-- q3.sql.err
                      |   |   |-- q3.sql.out
                      |   |   |-- q4.sql.err
                      |   |   |-- q4.sql.out
                      |   |   |-- q5.sql.err
                      |   |   |-- q5.sql.out
                      |   |   |-- q6.sql.err
                      |   |   |-- q6.sql.out
                      |   |   |-- q7.sql.err
                      |   |   |-- q7.sql.out
                      |   |   |-- q8.sql.err
                      |   |   |-- q8.sql.out
                      |   |   |-- q9.sql.err
                      |   |   |-- q9.sql.out
                      |   |   `-- run.log
                      |   `-- logs-20240628144609
                      |       |-- q10.sql.err
                      |       |-- q10.sql.out
                      |       |-- q11.sql.err
                      |       |-- q11.sql.out
                      |       |-- q12.sql.err
                      |       |-- q12.sql.out
                      |       |-- q13.sql.err
                      |       |-- q13.sql.out
                      |       |-- q14.sql.err
                      |       |-- q14.sql.out
                      |       |-- q15.sql.err
                      |       |-- q15.sql.out
                      |       |-- q16.sql.err
                      |       |-- q16.sql.out
                      |       |-- q17.sql.err
                      |       |-- q17.sql.out
                      |       |-- q18.sql.err
                      |       |-- q18.sql.out
                      |       |-- q19.sql.err
                      |       |-- q19.sql.out
                      |       |-- q1.sql.err
                      |       |-- q1.sql.out
                      |       |-- q20.sql.err
                      |       |-- q20.sql.out
                      |       |-- q21.sql.err
                      |       |-- q21.sql.out
                      |       |-- q22.sql.err
                      |       |-- q22.sql.out
                      |       |-- q2.sql.err
                      |       |-- q2.sql.out
                      |       |-- q3.sql.err
                      |       |-- q3.sql.out
                      |       |-- q4.sql.err
                      |       |-- q4.sql.out
                      |       |-- q5.sql.err
                      |       |-- q5.sql.out
                      |       |-- q6.sql.err
                      |       |-- q6.sql.out
                      |       |-- q7.sql.err
                      |       |-- q7.sql.out
                      |       |-- q8.sql.err
                      |       |-- q8.sql.out
                      |       |-- q9.sql.err
                      |       |-- q9.sql.out
                      |       `-- run.log
                      |-- queries
                      |   |-- ddl
                      |   |   |-- hologres_analyze_tables.sql
                      |   |   `-- hologres_create_tables.sql
                      |   |-- q10.sql
                      |   |-- q11.sql
                      |   |-- q12.sql
                      |   |-- q13.sql
                      |   |-- q14.sql
                      |   |-- q15.sql
                      |   |-- q16.sql
                      |   |-- q17.sql
                      |   |-- q18.sql
                      |   |-- q19.sql
                      |   |-- q1.sql
                      |   |-- q20.sql
                      |   |-- q21.sql
                      |   |-- q22.sql
                      |   |-- q2.sql
                      |   |-- q3.sql
                      |   |-- q4.sql
                      |   |-- q5.sql
                      |   |-- q6.sql
                      |   |-- q7.sql
                      |   |-- q8.sql
                      |   `-- q9.sql
                      |-- run_hologres.sh
                      |-- run_mysql.sh
                      |-- run.sh
                      `-- tpch_tools
                          |-- dbgen
                          |-- qgen
                          `-- resouces
                              |-- dists.dss
                              `-- queries
                                  |-- 10.sql
                                  |-- 11.sql
                                  |-- 12.sql
                                  |-- 13.sql
                                  |-- 14.sql
                                  |-- 15.sql
                                  |-- 16.sql
                                  |-- 17.sql
                                  |-- 18.sql
                                  |-- 19.sql
                                  |-- 1.sql
                                  |-- 20.sql
                                  |-- 21.sql
                                  |-- 22.sql
                                  |-- 2.sql
                                  |-- 3.sql
                                  |-- 4.sql
                                  |-- 5.sql
                                  |-- 6.sql
                                  |-- 7.sql
                                  |-- 8.sql
                                  `-- 9.sql

Performance test on point queries of key-value pairs

You can use the database hologres_tpch and the table ORDERS that are created for the performance test on OLAP queries to perform the performance test on point queries of key-value pairs. Procedure:

  1. Create a table.

    The performance test on point queries of key-value pairs requires a row-oriented table. Therefore, the table created for the performance test on OLAP queries cannot be directly used. You must create a row-oriented table. You can use the PostgreSQL client to connect to the Hologres instance and run the following command to create a table named public.orders_row.

    Note

    For more information about how to use the PostgreSQL client to connect to the Hologres instance, see the "Connect to a Hologres instance for data development" section in Use the PostgreSQL client to connect to Hologres.

    DROP TABLE IF EXISTS public.orders_row;
    
    BEGIN;
    CREATE TABLE public.orders_row(
        O_ORDERKEY       BIGINT         NOT NULL PRIMARY KEY
        ,O_CUSTKEY       INT            NOT NULL
        ,O_ORDERSTATUS   TEXT           NOT NULL
        ,O_TOTALPRICE    DECIMAL(15,2)  NOT NULL
        ,O_ORDERDATE     TIMESTAMPTZ    NOT NULL
        ,O_ORDERPRIORITY TEXT           NOT NULL
        ,O_CLERK         TEXT           NOT NULL
        ,O_SHIPPRIORITY  INT            NOT NULL
        ,O_COMMENT       TEXT           NOT NULL
    );
    CALL SET_TABLE_PROPERTY('public.orders_row', 'orientation', 'row');
    CALL SET_TABLE_PROPERTY('public.orders_row', 'clustering_key', 'o_orderkey');
    CALL SET_TABLE_PROPERTY('public.orders_row', 'distribution_key', 'o_orderkey');
    COMMIT;
  2. Import data.

    You can execute the INSERT INTO statement to import data from the ORDERS table in the TPC-H dataset to the public.orders_row table.

    Note

    Hologres V2.1.17 and later support the Serverless Computing feature. The Serverless Computing feature is suitable for scenarios in which you want to import a large amount of data offline, run large-scale extract, transform, and load (ETL) jobs, or query a large amount of data from foreign tables. You can use the Serverless Computing feature to perform the preceding operations based on additional serverless computing resources. This can eliminate the need to reserve additional computing resources for the instances. This improves instance stability and reduces the occurrences of out of memory (OOM) errors. You are charged only for the additional serverless computing resources used by tasks. For more information about the Serverless Computing feature, see Overview of Serverless Computing. For more information about how to use the Serverless Computing feature, see User guide on Serverless Computing.

    -- Optional. We recommend that you use the Serverless Computing feature to import a large amount of data offline and run extract, transform, and load (ETL) jobs.
    SET hg_computing_resource = 'serverless';
    
    INSERT INTO public.orders_row SELECT * FROM public.orders;
    
    -- Reset the configurations. This ensures that serverless computing resources are not used for subsequent SQL statements. 
    RESET hg_computing_resource;
  3. Perform queries.

    1. Generate a query statement.

      The following table describes the two types of queries involved in the performance test on point queries of key-value pairs.

      Query type

      Query statement

      Description

      Single-value filtering

      SELECT  column_a
              ,column_b
              ,...
              ,column_x
      FROM    table_x
      WHERE   pk = value_x
      ;

      This query statement applies to single-value filtering where only one primary key value is specified in the WHERE clause.

      Multi-value filtering

      SELECT  column_a
              ,column_b
              ,...
              ,column_x
      FROM    table_x
      WHERE   pk IN ( value_a, value_b,..., value_x )
      ;

      This query statement applies to multi-value filtering where multiple primary key values are specified in the WHERE clause.

      You can execute the following script to generate the required SQL statement.

      rm -rf kv_query
      mkdir kv_query
      cd kv_query
      echo "
      \set column_values random(1,99999999)
      select O_ORDERKEY,O_CUSTKEY,O_ORDERSTATUS,O_TOTALPRICE,O_ORDERDATE,O_ORDERPRIORITY,O_CLERK,O_SHIPPRIORITY,O_COMMENT from public.orders_row WHERE o_orderkey =:column_values;
      " >> kv_query_single.sql
      echo "
      \set column_values1 random(1,99999999)
      \set column_values2 random(1,99999999)
      \set column_values3 random(1,99999999)
      \set column_values4 random(1,99999999)
      \set column_values5 random(1,99999999)
      \set column_values6 random(1,99999999)
      \set column_values7 random(1,99999999)
      \set column_values8 random(1,99999999)
      \set column_values9 random(1,99999999)
      select O_ORDERKEY,O_CUSTKEY,O_ORDERSTATUS,O_TOTALPRICE,O_ORDERDATE,O_ORDERPRIORITY,O_CLERK,O_SHIPPRIORITY,O_COMMENT from public.orders_row WHERE o_orderkey in(:column_values1,:column_values2,:column_values3,:column_values4,:column_values5,:column_values6,:column_values7,:column_values8,:column_values9);
      " >> kv_query_in.sql

      Two SQL files are generated:

      • kv_query_single.sql: The SQL statement that applies to single-value filtering is saved in this file.

      • kv_query_in.sql: The SQL statement that applies to multi-value filtering is saved in this file, where 10 random primary key values are specified in the WHERE clause.

    2. Install pgbench, which facilitates statistics collection on queries. You can run the following command to install pgbench:

      yum install postgresql-contrib -y

      To prevent incompatibility issues, we recommend that you install pgbench V13 or later. If you have locally installed pgbench, make sure that its version is later than V9.6. To view the version of pgbench, run the following command:

      pgbench --version
    3. Execute the query statement.

      Note

      You must run the following commands in the directory where the SQL files reside.

      • Use pgbench to execute the query statement that applies to single-value filtering.

        PGUSER=<AccessKey_ID> PGPASSWORD=<AccessKey_Secret> PGDATABASE=<Database> pgbench -h <Endpoint> -p <Port> -c <Client_Num> -T <Query_Seconds> -M prepared -n -f kv_query_single.sql
      • Use pgbench to execute the query statement that applies to multi-value filtering.

        PGUSER=<AccessKey_ID> PGPASSWORD=<AccessKey_Secret> PGDATABASE=<Database> pgbench -h <Endpoint> -p <Port> -c <Client_Num> -T <Query_Seconds> -M prepared -n -f kv_query_in.sql

      The following table describes the parameters in the preceding commands.

      Parameter

      Description

      AccessKey_ID

      The AccessKey ID of your Alibaba Cloud account.

      You can obtain the AccessKey ID from the AccessKey Pair page.

      AccessKey_Secret

      The AccessKey secret of your Alibaba Cloud account.

      You can obtain the AccessKey secret from the AccessKey Pair page.

      Database

      • The name of the Hologres database.

      • After you purchase a Hologres instance, a database named postgres is created by default.

      • You can connect the postgres database to the Hologres instance. However, limited resources are allocated to this database. We recommend that you create a database to ensure sufficient resources for your business. For more information, see Create a database.

      Endpoint

      The endpoint of the Hologres instance.

      You can obtain the endpoint of the Hologres instance from the Network Information section of the Instance Details page in the Hologres console.

      Port

      The port number of the Hologres instance.

      You can obtain the port number of the Hologres instance on the Instance Details page in the Hologres console.

      Client_Num

      The number of clients to be tested.

      In this example, you need to test only query performance, but not the concurrency. Therefore, this parameter is set to 1.

      Query_Seconds

      The stress testing duration of each query to be executed by each client. Unit: seconds. In this example, this parameter is set to 300.

Data update test

You can test the performance of data updates based on the primary key for the OLAP engine. In this example, a row of data is inserted, or a row of data is updated if a primary key conflict occurs.

  • Generate a query statement.

    echo "
    \set O_ORDERKEY random(1,99999999)
    INSERT INTO public.orders_row(o_orderkey,o_custkey,o_orderstatus,o_totalprice,o_orderdate,o_orderpriority,o_clerk,o_shippriority,o_comment) VALUES (:O_ORDERKEY,1,'demo',1.1,'2021-01-01','demo','demo',1,'demo') on conflict(o_orderkey) do update set (o_orderkey,o_custkey,o_orderstatus,o_totalprice,o_orderdate,o_orderpriority,o_clerk,o_shippriority,o_comment)= ROW(excluded.*);
    " > /root/insert_on_conflict.sql
  • Insert data or update data. For more information about the parameters, see Parameters in this topic.

    PGUSER=<AccessKey_ID> PGPASSWORD=<AccessKey_Secret> PGDATABASE=<Database> pgbench -h <Endpoint> -p <Port> -c <Client_Num> -T <Query_Seconds> -M prepared -n -f /root/insert_on_conflict.sql
  • Sample result:

    transaction type: Custom query
    scaling factor: 1
    query mode: prepared
    number of clients: 249
    number of threads: 1
    duration: 60 s
    number of transactions actually processed: 1923038
    tps = 32005.850214 (including connections establishing)
    tps = 36403.145722 (excluding connections establishing)

Performance test on using Realtime Compute for Apache Flink to write data to Hologres in real time

You can perform this test to evaluate the performance of using Realtime Compute for Apache Flink to write data to Hologres in real time.

  • Hologres DDL statements

    In this example, a Hologres table that contains 10 columns is used. The key column is configured as the primary key column. To create this Hologres table, you can execute the following DDL statements:

    DROP TABLE IF EXISTS flink_insert;
    
    BEGIN ;
    CREATE TABLE IF NOT EXISTS flink_insert(
      key INT PRIMARY KEY
      ,value1 TEXT
      ,value2 TEXT
      ,value3 TEXT
      ,value4 TEXT
      ,value5 TEXT
      ,value6 TEXT
      ,value7 TEXT
      ,value8 TEXT
      ,value9 TEXT
    );
    CALL SET_TABLE_PROPERTY('flink_insert', 'orientation', 'row');
    CALL SET_TABLE_PROPERTY('flink_insert', 'clustering_key', 'key');
    CALL SET_TABLE_PROPERTY('flink_insert', 'distribution_key', 'key');
    COMMIT;
  • Scripts for a Realtime Compute for Apache Flink deployment

    You can use the random number generator provided by fully managed Flink to write data to Hologres. If a primary key conflict occurs, the entire row of data is updated. Each row contains data of more than 512 bytes. You can execute the following scripts to run a Realtime Compute for Apache Flink job:

    CREATE TEMPORARY TABLE flink_case_1_source (
        key INT,
        value1 VARCHAR,
        value2 VARCHAR,
        value3 VARCHAR,
        value4 VARCHAR,
        value5 VARCHAR,
        value6 VARCHAR,
        value7 VARCHAR,
        value8 VARCHAR,
        value9 VARCHAR
      )
    WITH (
        'connector' = 'datagen',
         -- optional options --
        'rows-per-second' = '1000000000',
        'fields.key.min'='1',
        'fields.key.max'='2147483647',
        'fields.value1.length' = '57',
        'fields.value2.length' = '57',
        'fields.value3.length' = '57',
        'fields.value4.length' = '57',
        'fields.value5.length' = '57',
        'fields.value6.length' = '57',
        'fields.value7.length' = '57',
        'fields.value8.length' = '57',
        'fields.value9.length' = '57'
      );
    
    -- Create a Hologres result table.
    CREATE TEMPORARY TABLE flink_case_1_sink (
        key INT,
        value1 VARCHAR,
        value2 VARCHAR,
        value3 VARCHAR,
        value4 VARCHAR,
        value5 VARCHAR,
        value6 VARCHAR,
        value7 VARCHAR,
        value8 VARCHAR,
        value9 VARCHAR
      )
    WITH (
        'connector' = 'hologres',
        'dbname'='<yourDbname>', -- The name of the Hologres database. 
        'tablename'='<yourTablename>', -- The name of the Hologres table to which you want to write data. 
        'username'='<yourUsername>', --The AccessKey ID of your Alibaba Cloud account. 
        'password'='<yourPassword>', -- The AccessKey secret of your Alibaba Cloud account. 
        'endpoint'='<yourEndpoint>', -- The VPC endpoint of the Hologres instance to which you want to connect. 
        'connectionSize' = '10', -- The default value is 3.
        'jdbcWriteBatchSize' = '1024', -- The default value is 256.
        'jdbcWriteBatchByteSize' = '2147483647',  -- The default value is 20971520.
        'mutatetype'='insertorreplace'  -- Insert a row of data, or replace data in an entire row.
      );
    
    -- Extract, transform, and load data and write data to Hologres.
    insert into flink_case_1_sink
    select key,
      value1,
      value2,
      value3,
      value4,
      value5,
      value6,
      value7,
      value8,
      value9
    from
      flink_case_1_source
    ;

    For more information about the parameters, see Hologres result table.

  • Sample result:

    On the Monitoring Information page of the Hologres instance in the Hologres console, you can view the records per second (RPS).RPS

22 TPC-H query statements

The following table provides the links to the 22 TPC-H query statements. To view a specific query statement, you can click the link in the table.

Item

Query statement

22 TPC-H query statements

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

-

-

  • Q1

    select
            l_returnflag,
            l_linestatus,
            sum(l_quantity) as sum_qty,
            sum(l_extendedprice) as sum_base_price,
            sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
            sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
            avg(l_quantity) as avg_qty,
            avg(l_extendedprice) as avg_price,
            avg(l_discount) as avg_disc,
            count(*) as count_order
    from
            lineitem
    where
            l_shipdate <= date '1998-12-01' - interval '120' day
    group by
            l_returnflag,
            l_linestatus
    order by
            l_returnflag,
            l_linestatus;
  • Q2

    select
            s_acctbal,
            s_name,
            n_name,
            p_partkey,
            p_mfgr,
            s_address,
            s_phone,
            s_comment
    from
            part,
            supplier,
            partsupp,
            nation,
            region
    where
            p_partkey = ps_partkey
            and s_suppkey = ps_suppkey
            and p_size = 48
            and p_type like '%STEEL'
            and s_nationkey = n_nationkey
            and n_regionkey = r_regionkey
            and r_name = 'EUROPE'
            and ps_supplycost = (
                    select
                            min(ps_supplycost)
                    from
                            partsupp,
                            supplier,
                            nation,
                            region
                    where
                            p_partkey = ps_partkey
                            and s_suppkey = ps_suppkey
                            and s_nationkey = n_nationkey
                            and n_regionkey = r_regionkey
                            and r_name = 'EUROPE'
            )
    order by
            s_acctbal desc,
            n_name,
            s_name,
            p_partkey
    limit 100;
  • Q3

    select
            l_orderkey,
            sum(l_extendedprice * (1 - l_discount)) as revenue,
            o_orderdate,
            o_shippriority
    from
            customer,
            orders,
            lineitem
    where
            c_mktsegment = 'MACHINERY'
            and c_custkey = o_custkey
            and l_orderkey = o_orderkey
            and o_orderdate < date '1995-03-23'
            and l_shipdate > date '1995-03-23'
    group by
            l_orderkey,
            o_orderdate,
            o_shippriority
    order by
            revenue desc,
            o_orderdate
    limit 10;
  • Q4

    select
            o_orderpriority,
            count(*) as order_count
    from
            orders
    where
            o_orderdate >= date '1996-07-01'
            and o_orderdate < date '1996-07-01' + interval '3' month
            and exists (
                    select
                            *
                    from
                            lineitem
                    where
                            l_orderkey = o_orderkey
                            and l_commitdate < l_receiptdate
            )
    group by
            o_orderpriority
    order by
            o_orderpriority;
  • Q5

    select
            n_name,
            sum(l_extendedprice * (1 - l_discount)) as revenue
    from
            customer,
            orders,
            lineitem,
            supplier,
            nation,
            region
    where
            c_custkey = o_custkey
            and l_orderkey = o_orderkey
            and l_suppkey = s_suppkey
            and c_nationkey = s_nationkey
            and s_nationkey = n_nationkey
            and n_regionkey = r_regionkey
            and r_name = 'EUROPE'
            and o_orderdate >= date '1996-01-01'
            and o_orderdate < date '1996-01-01' + interval '1' year
    group by
            n_name
    order by
            revenue desc;
  • Q6

    select
            sum(l_extendedprice * l_discount) as revenue
    from
            lineitem
    where
            l_shipdate >= date '1996-01-01'
            and l_shipdate < date '1996-01-01' + interval '1' year
            and l_discount between 0.02 - 0.01 and 0.02 + 0.01
            and l_quantity < 24;
  • Q7

    select
            supp_nation,
            cust_nation,
            l_year,
            sum(volume) as revenue
    from
            (
                    select
                            n1.n_name as supp_nation,
                            n2.n_name as cust_nation,
                            extract(year from l_shipdate) as l_year,
                            l_extendedprice * (1 - l_discount) as volume
                    from
                            supplier,
                            lineitem,
                            orders,
                            customer,
                            nation n1,
                            nation n2
                    where
                            s_suppkey = l_suppkey
                            and o_orderkey = l_orderkey
                            and c_custkey = o_custkey
                            and s_nationkey = n1.n_nationkey
                            and c_nationkey = n2.n_nationkey
                            and (
                                    (n1.n_name = 'CANADA' and n2.n_name = 'BRAZIL')
                                    or (n1.n_name = 'BRAZIL' and n2.n_name = 'CANADA')
                            )
                            and l_shipdate between date '1995-01-01' and date '1996-12-31'
            ) as shipping
    group by
            supp_nation,
            cust_nation,
            l_year
    order by
            supp_nation,
            cust_nation,
            l_year;
  • Q8

    select
            o_year,
            sum(case
                    when nation = 'BRAZIL' then volume
                    else 0
            end) / sum(volume) as mkt_share
    from
            (
                    select
                            extract(year from o_orderdate) as o_year,
                            l_extendedprice * (1 - l_discount) as volume,
                            n2.n_name as nation
                    from
                            part,
                            supplier,
                            lineitem,
                            orders,
                            customer,
                            nation n1,
                            nation n2,
                            region
                    where
                            p_partkey = l_partkey
                            and s_suppkey = l_suppkey
                            and l_orderkey = o_orderkey
                            and o_custkey = c_custkey
                            and c_nationkey = n1.n_nationkey
                            and n1.n_regionkey = r_regionkey
                            and r_name = 'AMERICA'
                            and s_nationkey = n2.n_nationkey
                            and o_orderdate between date '1995-01-01' and date '1996-12-31'
                            and p_type = 'LARGE ANODIZED COPPER'
            ) as all_nations
    group by
            o_year
    order by
            o_year;
  • Q9

    select
            nation,
            o_year,
            sum(amount) as sum_profit
    from
            (
                    select
                            n_name as nation,
                            extract(year from o_orderdate) as o_year,
                            l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount
                    from
                            part,
                            supplier,
                            lineitem,
                            partsupp,
                            orders,
                            nation
                    where
                            s_suppkey = l_suppkey
                            and ps_suppkey = l_suppkey
                            and ps_partkey = l_partkey
                            and p_partkey = l_partkey
                            and o_orderkey = l_orderkey
                            and s_nationkey = n_nationkey
                            and p_name like '%maroon%'
            ) as profit
    group by
            nation,
            o_year
    order by
            nation,
            o_year desc;
  • Q10

    select
            c_custkey,
            c_name,
            sum(l_extendedprice * (1 - l_discount)) as revenue,
            c_acctbal,
            n_name,
            c_address,
            c_phone,
            c_comment
    from
            customer,
            orders,
            lineitem,
            nation
    where
            c_custkey = o_custkey
            and l_orderkey = o_orderkey
            and o_orderdate >= date '1993-02-01'
            and o_orderdate < date '1993-02-01' + interval '3' month
            and l_returnflag = 'R'
            and c_nationkey = n_nationkey
    group by
            c_custkey,
            c_name,
            c_acctbal,
            c_phone,
            n_name,
            c_address,
            c_comment
    order by
            revenue desc
    limit 20;
  • Q11

    select
            ps_partkey,
            sum(ps_supplycost * ps_availqty) as value
    from
            partsupp,
            supplier,
            nation
    where
            ps_suppkey = s_suppkey
            and s_nationkey = n_nationkey
            and n_name = 'EGYPT'
    group by
            ps_partkey having
                    sum(ps_supplycost * ps_availqty) > (
                            select
                                    sum(ps_supplycost * ps_availqty) * 0.0001000000
                            from
                                    partsupp,
                                    supplier,
                                    nation
                            where
                                    ps_suppkey = s_suppkey
                                    and s_nationkey = n_nationkey
                                    and n_name = 'EGYPT'
                    )
    order by
            value desc;
  • Q12

    select
            l_shipmode,
            sum(case
                    when o_orderpriority = '1-URGENT'
                            or o_orderpriority = '2-HIGH'
                            then 1
                    else 0
            end) as high_line_count,
            sum(case
                    when o_orderpriority <> '1-URGENT'
                            and o_orderpriority <> '2-HIGH'
                            then 1
                    else 0
            end) as low_line_count
    from
            orders,
            lineitem
    where
            o_orderkey = l_orderkey
            and l_shipmode in ('FOB', 'AIR')
            and l_commitdate < l_receiptdate
            and l_shipdate < l_commitdate
            and l_receiptdate >= date '1997-01-01'
            and l_receiptdate < date '1997-01-01' + interval '1' year
    group by
            l_shipmode
    order by
            l_shipmode;
  • Q13

    select
            c_count,
            count(*) as custdist
    from
            (
                    select
                            c_custkey,
                            count(o_orderkey) as c_count
                    from
                            customer left outer join orders on
                                    c_custkey = o_custkey
                                    and o_comment not like '%special%deposits%'
                    group by
                            c_custkey
            ) c_orders
    group by
            c_count
    order by
            custdist desc,
            c_count desc;
  • Q14

    select
            100.00 * sum(case
                    when p_type like 'PROMO%'
                            then l_extendedprice * (1 - l_discount)
                    else 0
            end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue
    from
            lineitem,
            part
    where
            l_partkey = p_partkey
            and l_shipdate >= date '1997-06-01'
            and l_shipdate < date '1997-06-01' + interval '1' month;
  • Q15

    with revenue0(SUPPLIER_NO, TOTAL_REVENUE)  as
        (
        select
            l_suppkey,
            sum(l_extendedprice * (1 - l_discount))
        from
            lineitem
        where
            l_shipdate >= date '1995-02-01'
            and l_shipdate < date '1995-02-01' + interval '3' month
        group by
            l_suppkey
        )
    select
        s_suppkey,
        s_name,
        s_address,
        s_phone,
        total_revenue
    from
        supplier,
        revenue0
    where
        s_suppkey = supplier_no
        and total_revenue = (
            select
                max(total_revenue)
            from
                revenue0
        )
    order by
        s_suppkey;
  • Q16

    select
            p_brand,
            p_type,
            p_size,
            count(distinct ps_suppkey) as supplier_cnt
    from
            partsupp,
            part
    where
            p_partkey = ps_partkey
            and p_brand <> 'Brand#45'
            and p_type not like 'SMALL ANODIZED%'
            and p_size in (47, 15, 37, 30, 46, 16, 18, 6)
            and ps_suppkey not in (
                    select
                            s_suppkey
                    from
                            supplier
                    where
                            s_comment like '%Customer%Complaints%'
            )
    group by
            p_brand,
            p_type,
            p_size
    order by
            supplier_cnt desc,
            p_brand,
            p_type,
            p_size;
  • Q17

    select
            sum(l_extendedprice) / 7.0 as avg_yearly
    from
            lineitem,
            part
    where
            p_partkey = l_partkey
            and p_brand = 'Brand#51'
            and p_container = 'WRAP PACK'
            and l_quantity < (
                    select
                            0.2 * avg(l_quantity)
                    from
                            lineitem
                    where
                            l_partkey = p_partkey
            );
  • Q18

    select
            c_name,
            c_custkey,
            o_orderkey,
            o_orderdate,
            o_totalprice,
            sum(l_quantity)
    from
            customer,
            orders,
            lineitem
    where
            o_orderkey in (
                    select
                            l_orderkey
                    from
                            lineitem
                    group by
                            l_orderkey having
                                    sum(l_quantity) > 312
            )
            and c_custkey = o_custkey
            and o_orderkey = l_orderkey
    group by
            c_name,
            c_custkey,
            o_orderkey,
            o_orderdate,
            o_totalprice
    order by
            o_totalprice desc,
            o_orderdate
    limit 100;
  • Q19

    select
            sum(l_extendedprice* (1 - l_discount)) as revenue
    from
            lineitem,
            part
    where
            (
                    p_partkey = l_partkey
                    and p_brand = 'Brand#52'
                    and p_container in ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')
                    and l_quantity >= 3 and l_quantity <= 3 + 10
                    and p_size between 1 and 5
                    and l_shipmode in ('AIR', 'AIR REG')
                    and l_shipinstruct = 'DELIVER IN PERSON'
            )
            or
            (
                    p_partkey = l_partkey
                    and p_brand = 'Brand#43'
                    and p_container in ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')
                    and l_quantity >= 12 and l_quantity <= 12 + 10
                    and p_size between 1 and 10
                    and l_shipmode in ('AIR', 'AIR REG')
                    and l_shipinstruct = 'DELIVER IN PERSON'
            )
            or
            (
                    p_partkey = l_partkey
                    and p_brand = 'Brand#52'
                    and p_container in ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')
                    and l_quantity >= 21 and l_quantity <= 21 + 10
                    and p_size between 1 and 15
                    and l_shipmode in ('AIR', 'AIR REG')
                    and l_shipinstruct = 'DELIVER IN PERSON'
            );
  • Q20

    select
            s_name,
            s_address
    from
            supplier,
            nation
    where
            s_suppkey in (
                    select
                            ps_suppkey
                    from
                            partsupp
                    where
                            ps_partkey in (
                                    select
                                            p_partkey
                                    from
                                            part
                                    where
                                            p_name like 'drab%'
                            )
                            and ps_availqty > (
                                    select
                                            0.5 * sum(l_quantity)
                                    from
                                            lineitem
                                    where
                                            l_partkey = ps_partkey
                                            and l_suppkey = ps_suppkey
                                            and l_shipdate >= date '1996-01-01'
                                            and l_shipdate < date '1996-01-01' + interval '1' year
                            )
            )
            and s_nationkey = n_nationkey
            and n_name = 'KENYA'
    order by
            s_name;
  • Q21

    select
            s_name,
            count(*) as numwait
    from
            supplier,
            lineitem l1,
            orders,
            nation
    where
            s_suppkey = l1.l_suppkey
            and o_orderkey = l1.l_orderkey
            and o_orderstatus = 'F'
            and l1.l_receiptdate > l1.l_commitdate
            and exists (
                    select
                            *
                    from
                            lineitem l2
                    where
                            l2.l_orderkey = l1.l_orderkey
                            and l2.l_suppkey <> l1.l_suppkey
            )
            and not exists (
                    select
                            *
                    from
                            lineitem l3
                    where
                            l3.l_orderkey = l1.l_orderkey
                            and l3.l_suppkey <> l1.l_suppkey
                            and l3.l_receiptdate > l3.l_commitdate
            )
            and s_nationkey = n_nationkey
            and n_name = 'PERU'
    group by
            s_name
    order by
            numwait desc,
            s_name
    limit 100;
  • Q22

    select
            cntrycode,
            count(*) as numcust,
            sum(c_acctbal) as totacctbal
    from
            (
                    select
                            substring(c_phone from 1 for 2) as cntrycode,
                            c_acctbal
                    from
                            customer
                    where
                            substring(c_phone from 1 for 2) in
                                    ('24', '32', '17', '18', '12', '14', '22')
                            and c_acctbal > (
                                    select
                                            avg(c_acctbal)
                                    from
                                            customer
                                    where
                                            c_acctbal > 0.00
                                            and substring(c_phone from 1 for 2) in
                                                    ('24', '32', '17', '18', '12', '14', '22')
                            )
                            and not exists (
                                    select
                                            *
                                    from
                                            orders
                                    where
                                            o_custkey = c_custkey
                            )
            ) as custsale
    group by
            cntrycode
    order by
            cntrycode;