All Products
Search
Document Center

Hologres:Test plan overview

Last Updated:Feb 04, 2026

This topic describes how to use TPC-H, a decision support benchmark, to run performance tests for OLAP query and Key/Value point query scenarios.

Introduction to TPC-H

The following description is quoted from the TPC Benchmark™ H (TPC-H) specification:

"TPC-H is a decision support benchmark. It consists of a suite of business-oriented ad-hoc queries and concurrent data modifications. The queries and the data populating the database have been chosen to have broad industry-wide relevance. This benchmark illustrates decision support systems that examine large volumes of data, execute queries with a high degree of complexity, and provide answers to critical business questions."

For more information, see the TPC-H Specification.

Note

The TPC-H implementation in this topic is based on TPC-H benchmarking. The results cannot be compared with published TPC-H benchmark results. The tests in this topic do not comply with all the requirements of TPC-H benchmarking.

Dataset introduction

TPC-H is a test set developed by the Transaction Processing Performance Council (TPC) to simulate decision support applications. It is widely used in academia and industry to evaluate the performance of decision support technologies.

TPC-H models a real production environment and simulates a data warehouse for a sales system. It contains eight tables, and the data volume can be scaled from 1 GB to 3 TB. The benchmark includes 22 queries. The primary evaluation method is the response time for each query, defined as the time from query submission to result retrieval. The test results reflect the system's overall query processing capability. For more information, see TPC-H Benchmark.

Scenario description

This test scenario includes the following parts:

The data volume directly affects the test results. The TPC-H generation tool uses a scale factor (SF) to control the size of the generated data. 1 SF corresponds to 1 GB.

Note

The data volume mentioned applies only to the raw data. It does not include space for indexes. Therefore, reserve additional space when you prepare the environment.

Notes

To reduce variables that might affect the test results, create a new instance for each test. Do not use instances that have been upgraded or downgraded.

OLAP query scenario test

  1. Preparations

    Prepare the basic environment for the OLAP query scenario.

    1. Create a Hologres instance. For more information, see Purchase a Hologres instance. This test uses a dedicated pay-as-you-go instance. Because the instance is only for testing, the compute resources are set to 96 cores and 384 GB. Select the compute resource specifications based on your business needs.

    2. Create an ECS instance. For more information, see Create an ECS instance. The ECS instance type used in this topic is as follows:

      Parameter

      Specification

      Specification

      ecs.g6.4xlarge

      Image

      Alibaba Cloud Linux 3.2104 LTS 64-bit

      Data disk

      Type: enterprise SSD. The specific data capacity depends on the test data volume.

  2. Download and configure the Hologres Benchmark test toolkit.

    1. Log on to the ECS instance. For more information, see Connect to an ECS instance.

    2. Install the PSQL client.

      yum update -y
      yum install postgresql-server -y
      yum install postgresql-contrib -y
    3. Download and decompress the Hologres Benchmark test toolkit.

      wget https://oss-tpch.oss-cn-hangzhou.aliyuncs.com/hologres_benchmark.tar.gz
      tar xvf hologres_benchmark.tar.gz
    4. Go to the hologres_benchmark directory.

      cd hologres_benchmark
    5. Run the vim group_vars/all command to configure the benchmark parameters.

      # DB config
      login_host: ""
      login_user: ""
      login_password: "" 
      login_port: ""
      
      # Benchmark run cluster: hologres
      cluster: "hologres"
      RUN_MODE: "HOTRUN"
      
      # Benchmark config
      scale_factor: 1
      work_dir_root: /your/working_dir/benchmark/workdirs
      dataset_generate_root_path: /your/working_dir/benchmark/datasets

      Parameter descriptions:

      Type

      Parameter

      Description

      Hologres service connection parameters

      login_host

      The VPC domain name of the Hologres instance.

      Log on to the Management Console, go to the instance details page, and obtain the domain name for the specified VPC from the Domain Name column in the Network Information section.

      Note

      The domain name does not include the port. Example: hgpostcn-cn-nwy364b5v009-cn-shanghai-vpc-st.hologres.aliyuncs.com

      login_port

      The VPC port of the Hologres instance.

      Log on to the Management Console, go to the instance details page, and obtain the port from the Domain Name column in the Network Information section.

      login_user

      The AccessKey ID of your account.

      Click AccessKey Management to obtain the AccessKey ID.

      login_password

      The AccessKey secret of your account.

      Benchmark configuration parameters

      scale_factor

      The scale factor of the dataset, which controls the size of the generated data. The default value is 1. The unit is GB.

      work_dir_root

      The root directory of the working directory. It stores TPC-H related data such as table creation statements and SQL statements to be executed. The default value is /your/working_dir/benchmark/workdirs.

      dataset_generate_root_path

      The path where the generated test dataset is stored. The default value is /your/working_dir/benchmark/datasets.

  3. Run the following command to perform an end-to-end automated TPC-H test.

    The end-to-end automated TPC-H test includes generating data, creating a test database named tpc_h_sf<scale_factor> (for example, tpc_h_sf1000), creating tables, and importing data.

    bin/run_tpch.sh

    You can also run the following command to perform only the TPC-H query test.

    bin/run_tpch.sh query
  4. View the test results.

    • Test result overview

      After the bin/run_tpch.sh command is run, the test results are displayed directly. The results resemble the following output.

      TASK [tpc_h : debug] **************************************************************************************************
      skipping: [worker-1]
      ok: [master] => {
          "command_output.stdout_lines": [
              "[info] 2024-06-28 14:46:09.768 | Run sql queries started.",
              "[info] 2024-06-28 14:46:09.947 | Run q10.sql started.",
              "[info] 2024-06-28 14:46:10.088 | Run q10.sql finished. Time taken: 0:00:00, 138 ms",
              "[info] 2024-06-28 14:46:10.239 | Run q11.sql started.",
              "[info] 2024-06-28 14:46:10.396 | Run q11.sql finished. Time taken: 0:00:00, 154 ms",
              "[info] 2024-06-28 14:46:10.505 | Run q12.sql started.",
              "[info] 2024-06-28 14:46:10.592 | Run q12.sql finished. Time taken: 0:00:00, 85 ms",
              "[info] 2024-06-28 14:46:10.703 | Run q13.sql started.",
              "[info] 2024-06-28 14:46:10.793 | Run q13.sql finished. Time taken: 0:00:00, 88 ms",
              "[info] 2024-06-28 14:46:10.883 | Run q14.sql started.",
              "[info] 2024-06-28 14:46:10.981 | Run q14.sql finished. Time taken: 0:00:00, 95 ms",
              "[info] 2024-06-28 14:46:11.132 | Run q15.sql started.",
              "[info] 2024-06-28 14:46:11.266 | Run q15.sql finished. Time taken: 0:00:00, 131 ms",
              "[info] 2024-06-28 14:46:11.441 | Run q16.sql started.",
              "[info] 2024-06-28 14:46:11.609 | Run q16.sql finished. Time taken: 0:00:00, 165 ms",
              "[info] 2024-06-28 14:46:11.728 | Run q17.sql started.",
              "[info] 2024-06-28 14:46:11.818 | Run q17.sql finished. Time taken: 0:00:00, 88 ms",
              "[info] 2024-06-28 14:46:12.017 | Run q18.sql started.",
              "[info] 2024-06-28 14:46:12.184 | Run q18.sql finished. Time taken: 0:00:00, 164 ms",
              "[info] 2024-06-28 14:46:12.287 | Run q19.sql started.",
              "[info] 2024-06-28 14:46:12.388 | Run q19.sql finished. Time taken: 0:00:00, 98 ms",
              "[info] 2024-06-28 14:46:12.503 | Run q1.sql started.",
              "[info] 2024-06-28 14:46:12.597 | Run q1.sql finished. Time taken: 0:00:00, 93 ms",
              "[info] 2024-06-28 14:46:12.732 | Run q20.sql started.",
              "[info] 2024-06-28 14:46:12.888 | Run q20.sql finished. Time taken: 0:00:00, 154 ms",
              "[info] 2024-06-28 14:46:13.184 | Run q21.sql started.",
              "[info] 2024-06-28 14:46:13.456 | Run q21.sql finished. Time taken: 0:00:00, 269 ms",
              "[info] 2024-06-28 14:46:13.558 | Run q22.sql started.",
              "[info] 2024-06-28 14:46:13.657 | Run q22.sql finished. Time taken: 0:00:00, 97 ms",
              "[info] 2024-06-28 14:46:13.796 | Run q2.sql started.",
              "[info] 2024-06-28 14:46:13.935 | Run q2.sql finished. Time taken: 0:00:00, 136 ms",
              "[info] 2024-06-28 14:46:14.051 | Run q3.sql started.",
              "[info] 2024-06-28 14:46:14.155 | Run q3.sql finished. Time taken: 0:00:00, 101 ms",
              "[info] 2024-06-28 14:46:14.255 | Run q4.sql started.",
              "[info] 2024-06-28 14:46:14.341 | Run q4.sql finished. Time taken: 0:00:00, 83 ms",
              "[info] 2024-06-28 14:46:14.567 | Run q5.sql started.",
              "[info] 2024-06-28 14:46:14.799 | Run q5.sql finished. Time taken: 0:00:00, 230 ms",
              "[info] 2024-06-28 14:46:14.881 | Run q6.sql started.",
              "[info] 2024-06-28 14:46:14.950 | Run q6.sql finished. Time taken: 0:00:00, 67 ms",
              "[info] 2024-06-28 14:46:15.138 | Run q7.sql started.",
              "[info] 2024-06-28 14:46:15.320 | Run q7.sql finished. Time taken: 0:00:00, 180 ms",
              "[info] 2024-06-28 14:46:15.572 | Run q8.sql started.",
              "[info] 2024-06-28 14:46:15.831 | Run q8.sql finished. Time taken: 0:00:00, 256 ms",
              "[info] 2024-06-28 14:46:16.081 | Run q9.sql started.",
              "[info] 2024-06-28 14:46:16.322 | Run q9.sql finished. Time taken: 0:00:00, 238 ms",
              "[info] 2024-06-28 14:46:16.325 | ----------- HOT RUN finished. Time taken: 3255 mill_sec -----------------"
          ]
      }
      skipping: [worker-2]
      skipping: [worker-3]
      skipping: [worker-4]
      
      TASK [tpc_h : clear Env] **********************************************************************************************
      skipping: [worker-1]
      skipping: [worker-2]
      skipping: [worker-3]
      skipping: [worker-4]
      ok: [master]
      
      TASK [tpc_h : debug] **************************************************************************************************
      ok: [master] => {
          "work_dir": "/your/working_dir/benchmark/workdirs/tpc_h/sf1"
      }
      skipping: [worker-1]
      skipping: [worker-2]
      skipping: [worker-3]
      skipping: [worker-4]
    • Test result details

      After you run the bin/run_tpch.sh command, the system builds the entire TPC-H test working directory and outputs the path of the <work_dir> directory. You can switch to this path to view related information such as query statements, table creation statements, and execution logs. The following figure shows an example.

      image

      Run the cd <work_dir>/logs command to go to the logs directory in the working directory. You can view the test results and the detailed results of the executed SQL statements.

      The directory structure of <work_dir> is as follows.

      working_dir/
      `-- benchmark
          |-- datasets
          |   `-- tpc_h
          |       `-- sf1
          |           |-- worker-1
          |           |   |-- customer.tbl
          |           |   `-- lineitem.tbl
          |           |-- worker-2
          |           |   |-- orders.tbl
          |           |   `-- supplier.tbl
          |           |-- worker-3
          |           |   |-- nation.tbl
          |           |   `-- partsupp.tbl
          |           `-- worker-4
          |               |-- part.tbl
          |               `-- region.tbl
          `-- workdirs
              `-- tpc_h
                  `-- sf1
                      |-- config
                      |-- hologres
                      |   |-- logs
                      |   |   |-- q10.sql.err
                      |   |   |-- q10.sql.out
                      |   |   |-- q11.sql.err
                      |   |   |-- q11.sql.out
                      |   |   |-- q12.sql.err
                      |   |   |-- q12.sql.out
                      |   |   |-- q13.sql.err
                      |   |   |-- q13.sql.out
                      |   |   |-- q14.sql.err
                      |   |   |-- q14.sql.out
                      |   |   |-- q15.sql.err
                      |   |   |-- q15.sql.out
                      |   |   |-- q16.sql.err
                      |   |   |-- q16.sql.out
                      |   |   |-- q17.sql.err
                      |   |   |-- q17.sql.out
                      |   |   |-- q18.sql.err
                      |   |   |-- q18.sql.out
                      |   |   |-- q19.sql.err
                      |   |   |-- q19.sql.out
                      |   |   |-- q1.sql.err
                      |   |   |-- q1.sql.out
                      |   |   |-- q20.sql.err
                      |   |   |-- q20.sql.out
                      |   |   |-- q21.sql.err
                      |   |   |-- q21.sql.out
                      |   |   |-- q22.sql.err
                      |   |   |-- q22.sql.out
                      |   |   |-- q2.sql.err
                      |   |   |-- q2.sql.out
                      |   |   |-- q3.sql.err
                      |   |   |-- q3.sql.out
                      |   |   |-- q4.sql.err
                      |   |   |-- q4.sql.out
                      |   |   |-- q5.sql.err
                      |   |   |-- q5.sql.out
                      |   |   |-- q6.sql.err
                      |   |   |-- q6.sql.out
                      |   |   |-- q7.sql.err
                      |   |   |-- q7.sql.out
                      |   |   |-- q8.sql.err
                      |   |   |-- q8.sql.out
                      |   |   |-- q9.sql.err
                      |   |   |-- q9.sql.out
                      |   |   `-- run.log
                      |   `-- logs-20240628144609
                      |       |-- q10.sql.err
                      |       |-- q10.sql.out
                      |       |-- q11.sql.err
                      |       |-- q11.sql.out
                      |       |-- q12.sql.err
                      |       |-- q12.sql.out
                      |       |-- q13.sql.err
                      |       |-- q13.sql.out
                      |       |-- q14.sql.err
                      |       |-- q14.sql.out
                      |       |-- q15.sql.err
                      |       |-- q15.sql.out
                      |       |-- q16.sql.err
                      |       |-- q16.sql.out
                      |       |-- q17.sql.err
                      |       |-- q17.sql.out
                      |       |-- q18.sql.err
                      |       |-- q18.sql.out
                      |       |-- q19.sql.err
                      |       |-- q19.sql.out
                      |       |-- q1.sql.err
                      |       |-- q1.sql.out
                      |       |-- q20.sql.err
                      |       |-- q20.sql.out
                      |       |-- q21.sql.err
                      |       |-- q21.sql.out
                      |       |-- q22.sql.err
                      |       |-- q22.sql.out
                      |       |-- q2.sql.err
                      |       |-- q2.sql.out
                      |       |-- q3.sql.err
                      |       |-- q3.sql.out
                      |       |-- q4.sql.err
                      |       |-- q4.sql.out
                      |       |-- q5.sql.err
                      |       |-- q5.sql.out
                      |       |-- q6.sql.err
                      |       |-- q6.sql.out
                      |       |-- q7.sql.err
                      |       |-- q7.sql.out
                      |       |-- q8.sql.err
                      |       |-- q8.sql.out
                      |       |-- q9.sql.err
                      |       |-- q9.sql.out
                      |       `-- run.log
                      |-- queries
                      |   |-- ddl
                      |   |   |-- hologres_analyze_tables.sql
                      |   |   `-- hologres_create_tables.sql
                      |   |-- q10.sql
                      |   |-- q11.sql
                      |   |-- q12.sql
                      |   |-- q13.sql
                      |   |-- q14.sql
                      |   |-- q15.sql
                      |   |-- q16.sql
                      |   |-- q17.sql
                      |   |-- q18.sql
                      |   |-- q19.sql
                      |   |-- q1.sql
                      |   |-- q20.sql
                      |   |-- q21.sql
                      |   |-- q22.sql
                      |   |-- q2.sql
                      |   |-- q3.sql
                      |   |-- q4.sql
                      |   |-- q5.sql
                      |   |-- q6.sql
                      |   |-- q7.sql
                      |   |-- q8.sql
                      |   `-- q9.sql
                      |-- run_hologres.sh
                      |-- run_mysql.sh
                      |-- run.sh
                      `-- tpch_tools
                          |-- dbgen
                          |-- qgen
                          `-- resouces
                              |-- dists.dss
                              `-- queries
                                  |-- 10.sql
                                  |-- 11.sql
                                  |-- 12.sql
                                  |-- 13.sql
                                  |-- 14.sql
                                  |-- 15.sql
                                  |-- 16.sql
                                  |-- 17.sql
                                  |-- 18.sql
                                  |-- 19.sql
                                  |-- 1.sql
                                  |-- 20.sql
                                  |-- 21.sql
                                  |-- 22.sql
                                  |-- 2.sql
                                  |-- 3.sql
                                  |-- 4.sql
                                  |-- 5.sql
                                  |-- 6.sql
                                  |-- 7.sql
                                  |-- 8.sql
                                  `-- 9.sql

Key/Value point query scenario test

For the Key/Value point query scenario test, you can continue to use the hologres_tpch database and the orders table created in the OLAP query scenario test. The steps are as follows:

  1. Create a table

    Because the Key/Value point query scenario uses a row-oriented table, you cannot directly use the orders table from the OLAP query scenario test. You must create a new table. Connect to Hologres using a PSQL client and run the following command to create the orders_row table.

    Note

    For more information about how to connect to Hologres using a PSQL client, see Connect to Hologres for development.

    DROP TABLE IF EXISTS public.orders_row;
    
    BEGIN;
    CREATE TABLE public.orders_row(
        O_ORDERKEY       BIGINT         NOT NULL PRIMARY KEY
        ,O_CUSTKEY       INT            NOT NULL
        ,O_ORDERSTATUS   TEXT           NOT NULL
        ,O_TOTALPRICE    DECIMAL(15,2)  NOT NULL
        ,O_ORDERDATE     TIMESTAMPTZ    NOT NULL
        ,O_ORDERPRIORITY TEXT           NOT NULL
        ,O_CLERK         TEXT           NOT NULL
        ,O_SHIPPRIORITY  INT            NOT NULL
        ,O_COMMENT       TEXT           NOT NULL
    );
    CALL SET_TABLE_PROPERTY('public.orders_row', 'orientation', 'row');
    CALL SET_TABLE_PROPERTY('public.orders_row', 'clustering_key', 'o_orderkey');
    CALL SET_TABLE_PROPERTY('public.orders_row', 'distribution_key', 'o_orderkey');
    COMMIT;
  2. Import data

    Use the following INSERT INTO statement to import data from the orders table in the TPC-H dataset to the orders_row table.

    Note

    Hologres V2.1.17 and later support Serverless Computing. For scenarios such as large-scale offline data import, large extract, transform, and load (ETL) jobs, and large-volume queries on foreign tables, you can use Serverless Computing to execute these tasks. This feature uses additional serverless resources instead of your instance's own resources. You do not need to reserve extra compute resources for your instance. This significantly improves instance stability, reduces the probability of out-of-memory (OOM) errors, and you are charged only for the individual tasks. For more information about Serverless Computing, see Serverless Computing. For information about how to use Serverless Computing, see Guide to using Serverless Computing.

    -- (Optional) Use Serverless Computing to perform large-scale offline data import and ETL jobs.
    SET hg_computing_resource = 'serverless';
    
    INSERT INTO public.orders_row SELECT * FROM public.orders;
    
    -- Reset the configuration to ensure that unnecessary SQL statements do not use serverless resources.
    RESET hg_computing_resource;
  3. Run queries

    1. Generate query statements.

      The Key/Value point query scenario has two main query types. The query statements are as follows:

      Query method

      Query statement

      Description

      Single-value filter

      SELECT  column_a
              ,column_b
              ,...
              ,column_x
      FROM    table_x
      WHERE   pk = value_x
      ;

      This query statement is used for single-value filtering, where the WHERE clause of the SQL statement has a unique value.

      Multi-value filter

      SELECT  column_a
              ,column_b
              ,...
              ,column_x
      FROM    table_x
      WHERE   pk IN ( value_a, value_b,..., value_x )
      ;

      This query statement is used for multi-value filtering, where the WHERE clause of the SQL statement can have multiple values.

      Use the following script to generate the required SQL statements.

      rm -rf kv_query
      mkdir kv_query
      cd kv_query
      echo "
      \set column_values random(1,99999999)
      select O_ORDERKEY,O_CUSTKEY,O_ORDERSTATUS,O_TOTALPRICE,O_ORDERDATE,O_ORDERPRIORITY,O_CLERK,O_SHIPPRIORITY,O_COMMENT from public.orders_row WHERE o_orderkey =:column_values;
      " >> kv_query_single.sql
      echo "
      \set column_values1 random(1,99999999)
      \set column_values2 random(1,99999999)
      \set column_values3 random(1,99999999)
      \set column_values4 random(1,99999999)
      \set column_values5 random(1,99999999)
      \set column_values6 random(1,99999999)
      \set column_values7 random(1,99999999)
      \set column_values8 random(1,99999999)
      \set column_values9 random(1,99999999)
      select O_ORDERKEY,O_CUSTKEY,O_ORDERSTATUS,O_TOTALPRICE,O_ORDERDATE,O_ORDERPRIORITY,O_CLERK,O_SHIPPRIORITY,O_COMMENT from public.orders_row WHERE o_orderkey in(:column_values1,:column_values2,:column_values3,:column_values4,:column_values5,:column_values6,:column_values7,:column_values8,:column_values9);
      " >> kv_query_in.sql

      After the script is run, two SQL files are generated:

      • kv_query_single.sql: The SQL for single-value filtering.

      • kv_query_in.sql: The SQL for multi-value filtering. This script randomly generates an SQL statement that filters for 10 values.

    2. To facilitate the collection of query statistics, use the pgbench tool. Run the following command to install the pgbench tool.

      yum install postgresql-contrib -y

      To avoid test issues caused by tool incompatibility, install pgbench 13 or later. If you have already installed the pgbench tool, make sure its version is 9.6 or later. Run the following command to check the current tool version.

      pgbench --version
    3. Run the test statements.

      Note

      Run the following commands in the directory where the query statements were generated.

      • For the single-value filtering scenario, use the pgbench tool for stress testing.

        PGUSER=<AccessKey_ID> PGPASSWORD=<AccessKey_Secret> PGDATABASE=<Database> pgbench -h <Endpoint> -p <Port> -c <Client_Num> -T <Query_Seconds> -M prepared -n -f kv_query_single.sql
      • For the multi-value filtering scenario, use the pgbench tool for stress testing.

        PGUSER=<AccessKey_ID> PGPASSWORD=<AccessKey_Secret> PGDATABASE=<Database> pgbench -h <Endpoint> -p <Port> -c <Client_Num> -T <Query_Seconds> -M prepared -n -f kv_query_in.sql

      The following table describes the parameters.

      Parameter

      Description

      AccessKey_ID

      The AccessKey ID of your Alibaba Cloud account.

      Click AccessKey Management to obtain the AccessKey ID.

      AccessKey_Secret

      The AccessKey secret of your Alibaba Cloud account.

      Click AccessKey Management to obtain the AccessKey secret.

      Database

      • The name of the Hologres database.

      • After you activate a Hologres instance, the system automatically creates the postgres database.

      • You can use the postgres database to connect to Hologres. However, this database is allocated few resources. For business development, create a new database. For more information, see Create a database.

      Endpoint

      The network address (Endpoint) of the Hologres instance.

      Go to the instance details page in the Hologres console and obtain the network address from the Network Information section.

      Port

      The network port of the Hologres instance.

      Go to the Instance Details page in the Hologres console to obtain the network port.

      Client_Num

      The number of clients, which is the concurrency.

      For example, this test only evaluates query performance, not concurrency. Set the concurrency to 1.

      Query_Seconds

      The stress testing duration (in seconds) for each query run by each client. For example, this parameter is set to 300 in this topic.

Data update scenario

This scenario tests the data update performance of the OLAP engine when a primary key exists and the performance of updating an entire row when a primary key conflict occurs.

  • Generate a query

    echo "
    \set O_ORDERKEY random(1,99999999)
    INSERT INTO public.orders_row(o_orderkey,o_custkey,o_orderstatus,o_totalprice,o_orderdate,o_orderpriority,o_clerk,o_shippriority,o_comment) VALUES (:O_ORDERKEY,1,'demo',1.1,'2021-01-01','demo','demo',1,'demo') on conflict(o_orderkey) do update set (o_orderkey,o_custkey,o_orderstatus,o_totalprice,o_orderdate,o_orderpriority,o_clerk,o_shippriority,o_comment)= ROW(excluded.*);
    " > /root/insert_on_conflict.sql
  • Insert and update. For more information about the parameters, see Parameter description.

    PGUSER=<AccessKey_ID> PGPASSWORD=<AccessKey_Secret> PGDATABASE=<Database> pgbench -h <Endpoint> -p <Port> -c <Client_Num> -T <Query_Seconds> -M prepared -n -f /root/insert_on_conflict.sql
  • Sample result

    transaction type: Custom query
    scaling factor: 1
    query mode: prepared
    number of clients: 249
    number of threads: 1
    duration: 60 s
    number of transactions actually processed: 1923038
    tps = 32005.850214 (including connections establishing)
    tps = 36403.145722 (excluding connections establishing)

Flink real-time write scenario

This scenario tests the real-time data write capability.

  • Hologres DDL

    In this scenario, the Hologres table has 10 columns, and the key column is the primary key. The Hologres DDL is as follows.

    DROP TABLE IF EXISTS flink_insert;
    
    BEGIN ;
    CREATE TABLE IF NOT EXISTS flink_insert(
      key INT PRIMARY KEY
      ,value1 TEXT
      ,value2 TEXT
      ,value3 TEXT
      ,value4 TEXT
      ,value5 TEXT
      ,value6 TEXT
      ,value7 TEXT
      ,value8 TEXT
      ,value9 TEXT
    );
    CALL SET_TABLE_PROPERTY('flink_insert', 'orientation', 'row');
    CALL SET_TABLE_PROPERTY('flink_insert', 'clustering_key', 'key');
    CALL SET_TABLE_PROPERTY('flink_insert', 'distribution_key', 'key');
    COMMIT;
  • Flink job script

    Use the random number generator that comes with fully managed Flink to write data to Hologres. If a primary key conflict occurs, the entire row is updated. The data volume of a single row exceeds 512 B. The Flink job script is as follows.

    CREATE TEMPORARY TABLE flink_case_1_source (
        key INT,
        value1 VARCHAR,
        value2 VARCHAR,
        value3 VARCHAR,
        value4 VARCHAR,
        value5 VARCHAR,
        value6 VARCHAR,
        value7 VARCHAR,
        value8 VARCHAR,
        value9 VARCHAR
      )
    WITH (
        'connector' = 'datagen',
         -- optional options --
        'rows-per-second' = '1000000000',
        'fields.key.min'='1',
        'fields.key.max'='2147483647',
        'fields.value1.length' = '57',
        'fields.value2.length' = '57',
        'fields.value3.length' = '57',
        'fields.value4.length' = '57',
        'fields.value5.length' = '57',
        'fields.value6.length' = '57',
        'fields.value7.length' = '57',
        'fields.value8.length' = '57',
        'fields.value9.length' = '57'
      );
    
    -- Create a Hologres sink table.
    CREATE TEMPORARY TABLE flink_case_1_sink (
        key INT,
        value1 VARCHAR,
        value2 VARCHAR,
        value3 VARCHAR,
        value4 VARCHAR,
        value5 VARCHAR,
        value6 VARCHAR,
        value7 VARCHAR,
        value8 VARCHAR,
        value9 VARCHAR
      )
    WITH (
        'connector' = 'hologres',
        'dbname'='<yourDbname>',  --The name of the Hologres database.
        'tablename'='<yourTablename>',  --The name of the Hologres table that receives data.
        'username'='<yourUsername>',  --The AccessKey ID of your Alibaba Cloud account.
        'password'='<yourPassword>',  --The AccessKey secret of your Alibaba Cloud account.
        'endpoint'='<yourEndpoint>',  --The VPC endpoint of the Hologres instance.
        'connectionSize' = '10',  --The default value is 3.
        'jdbcWriteBatchSize' = '1024',  --The default value is 256.
        'jdbcWriteBatchByteSize' = '2147483647',  --The default value is 20971520.
        'mutatetype'='insertorreplace'  --Inserts data or replaces an entire existing row.
      );
    
    -- Perform ETL operations and write data.
    insert into flink_case_1_sink
    select key,
      value1,
      value2,
      value3,
      value4,
      value5,
      value6,
      value7,
      value8,
      value9
    from
      flink_case_1_source
    ;

    For parameter descriptions, see Hologres sink table.

  • Sample result

    On the Monitoring Information page of the Hologres console, you can view the RPS value.RPS

The 22 TPC-H query statements

The 22 TPC-H query statements are as follows. You can click the links in the table to view them.

Name

Query statement

The 22 TPC-H query statements

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

-

-

  • Q1

    select
            l_returnflag,
            l_linestatus,
            sum(l_quantity) as sum_qty,
            sum(l_extendedprice) as sum_base_price,
            sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
            sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
            avg(l_quantity) as avg_qty,
            avg(l_extendedprice) as avg_price,
            avg(l_discount) as avg_disc,
            count(*) as count_order
    from
            lineitem
    where
            l_shipdate <= date '1998-12-01' - interval '120' day
    group by
            l_returnflag,
            l_linestatus
    order by
            l_returnflag,
            l_linestatus;
  • Q2

    select
            s_acctbal,
            s_name,
            n_name,
            p_partkey,
            p_mfgr,
            s_address,
            s_phone,
            s_comment
    from
            part,
            supplier,
            partsupp,
            nation,
            region
    where
            p_partkey = ps_partkey
            and s_suppkey = ps_suppkey
            and p_size = 48
            and p_type like '%STEEL'
            and s_nationkey = n_nationkey
            and n_regionkey = r_regionkey
            and r_name = 'EUROPE'
            and ps_supplycost = (
                    select
                            min(ps_supplycost)
                    from
                            partsupp,
                            supplier,
                            nation,
                            region
                    where
                            p_partkey = ps_partkey
                            and s_suppkey = ps_suppkey
                            and s_nationkey = n_nationkey
                            and n_regionkey = r_regionkey
                            and r_name = 'EUROPE'
            )
    order by
            s_acctbal desc,
            n_name,
            s_name,
            p_partkey
    limit 100;
  • Q3

    select
            l_orderkey,
            sum(l_extendedprice * (1 - l_discount)) as revenue,
            o_orderdate,
            o_shippriority
    from
            customer,
            orders,
            lineitem
    where
            c_mktsegment = 'MACHINERY'
            and c_custkey = o_custkey
            and l_orderkey = o_orderkey
            and o_orderdate < date '1995-03-23'
            and l_shipdate > date '1995-03-23'
    group by
            l_orderkey,
            o_orderdate,
            o_shippriority
    order by
            revenue desc,
            o_orderdate
    limit 10;
  • Q4

    select
            o_orderpriority,
            count(*) as order_count
    from
            orders
    where
            o_orderdate >= date '1996-07-01'
            and o_orderdate < date '1996-07-01' + interval '3' month
            and exists (
                    select
                            *
                    from
                            lineitem
                    where
                            l_orderkey = o_orderkey
                            and l_commitdate < l_receiptdate
            )
    group by
            o_orderpriority
    order by
            o_orderpriority;
  • Q5

    select
            n_name,
            sum(l_extendedprice * (1 - l_discount)) as revenue
    from
            customer,
            orders,
            lineitem,
            supplier,
            nation,
            region
    where
            c_custkey = o_custkey
            and l_orderkey = o_orderkey
            and l_suppkey = s_suppkey
            and c_nationkey = s_nationkey
            and s_nationkey = n_nationkey
            and n_regionkey = r_regionkey
            and r_name = 'EUROPE'
            and o_orderdate >= date '1996-01-01'
            and o_orderdate < date '1996-01-01' + interval '1' year
    group by
            n_name
    order by
            revenue desc;
  • Q6

    select
            sum(l_extendedprice * l_discount) as revenue
    from
            lineitem
    where
            l_shipdate >= date '1996-01-01'
            and l_shipdate < date '1996-01-01' + interval '1' year
            and l_discount between 0.02 - 0.01 and 0.02 + 0.01
            and l_quantity < 24;
  • Q7

    select
            supp_nation,
            cust_nation,
            l_year,
            sum(volume) as revenue
    from
            (
                    select
                            n1.n_name as supp_nation,
                            n2.n_name as cust_nation,
                            extract(year from l_shipdate) as l_year,
                            l_extendedprice * (1 - l_discount) as volume
                    from
                            supplier,
                            lineitem,
                            orders,
                            customer,
                            nation n1,
                            nation n2
                    where
                            s_suppkey = l_suppkey
                            and o_orderkey = l_orderkey
                            and c_custkey = o_custkey
                            and s_nationkey = n1.n_nationkey
                            and c_nationkey = n2.n_nationkey
                            and (
                                    (n1.n_name = 'CANADA' and n2.n_name = 'BRAZIL')
                                    or (n1.n_name = 'BRAZIL' and n2.n_name = 'CANADA')
                            )
                            and l_shipdate between date '1995-01-01' and date '1996-12-31'
            ) as shipping
    group by
            supp_nation,
            cust_nation,
            l_year
    order by
            supp_nation,
            cust_nation,
            l_year;
  • Q8

    select
            o_year,
            sum(case
                    when nation = 'BRAZIL' then volume
                    else 0
            end) / sum(volume) as mkt_share
    from
            (
                    select
                            extract(year from o_orderdate) as o_year,
                            l_extendedprice * (1 - l_discount) as volume,
                            n2.n_name as nation
                    from
                            part,
                            supplier,
                            lineitem,
                            orders,
                            customer,
                            nation n1,
                            nation n2,
                            region
                    where
                            p_partkey = l_partkey
                            and s_suppkey = l_suppkey
                            and l_orderkey = o_orderkey
                            and o_custkey = c_custkey
                            and c_nationkey = n1.n_nationkey
                            and n1.n_regionkey = r_regionkey
                            and r_name = 'AMERICA'
                            and s_nationkey = n2.n_nationkey
                            and o_orderdate between date '1995-01-01' and date '1996-12-31'
                            and p_type = 'LARGE ANODIZED COPPER'
            ) as all_nations
    group by
            o_year
    order by
            o_year;
  • Q9

    select
            nation,
            o_year,
            sum(amount) as sum_profit
    from
            (
                    select
                            n_name as nation,
                            extract(year from o_orderdate) as o_year,
                            l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount
                    from
                            part,
                            supplier,
                            lineitem,
                            partsupp,
                            orders,
                            nation
                    where
                            s_suppkey = l_suppkey
                            and ps_suppkey = l_suppkey
                            and ps_partkey = l_partkey
                            and p_partkey = l_partkey
                            and o_orderkey = l_orderkey
                            and s_nationkey = n_nationkey
                            and p_name like '%maroon%'
            ) as profit
    group by
            nation,
            o_year
    order by
            nation,
            o_year desc;
  • Q10

    select
            c_custkey,
            c_name,
            sum(l_extendedprice * (1 - l_discount)) as revenue,
            c_acctbal,
            n_name,
            c_address,
            c_phone,
            c_comment
    from
            customer,
            orders,
            lineitem,
            nation
    where
            c_custkey = o_custkey
            and l_orderkey = o_orderkey
            and o_orderdate >= date '1993-02-01'
            and o_orderdate < date '1993-02-01' + interval '3' month
            and l_returnflag = 'R'
            and c_nationkey = n_nationkey
    group by
            c_custkey,
            c_name,
            c_acctbal,
            c_phone,
            n_name,
            c_address,
            c_comment
    order by
            revenue desc
    limit 20;
  • Q11

    select
            ps_partkey,
            sum(ps_supplycost * ps_availqty) as value
    from
            partsupp,
            supplier,
            nation
    where
            ps_suppkey = s_suppkey
            and s_nationkey = n_nationkey
            and n_name = 'EGYPT'
    group by
            ps_partkey having
                    sum(ps_supplycost * ps_availqty) > (
                            select
                                    sum(ps_supplycost * ps_availqty) * 0.0001000000
                            from
                                    partsupp,
                                    supplier,
                                    nation
                            where
                                    ps_suppkey = s_suppkey
                                    and s_nationkey = n_nationkey
                                    and n_name = 'EGYPT'
                    )
    order by
            value desc;
  • Q12

    select
            l_shipmode,
            sum(case
                    when o_orderpriority = '1-URGENT'
                            or o_orderpriority = '2-HIGH'
                            then 1
                    else 0
            end) as high_line_count,
            sum(case
                    when o_orderpriority <> '1-URGENT'
                            and o_orderpriority <> '2-HIGH'
                            then 1
                    else 0
            end) as low_line_count
    from
            orders,
            lineitem
    where
            o_orderkey = l_orderkey
            and l_shipmode in ('FOB', 'AIR')
            and l_commitdate < l_receiptdate
            and l_shipdate < l_commitdate
            and l_receiptdate >= date '1997-01-01'
            and l_receiptdate < date '1997-01-01' + interval '1' year
    group by
            l_shipmode
    order by
            l_shipmode;
  • Q13

    select
            c_count,
            count(*) as custdist
    from
            (
                    select
                            c_custkey,
                            count(o_orderkey) as c_count
                    from
                            customer left outer join orders on
                                    c_custkey = o_custkey
                                    and o_comment not like '%special%deposits%'
                    group by
                            c_custkey
            ) c_orders
    group by
            c_count
    order by
            custdist desc,
            c_count desc;
  • Q14

    select
            100.00 * sum(case
                    when p_type like 'PROMO%'
                            then l_extendedprice * (1 - l_discount)
                    else 0
            end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue
    from
            lineitem,
            part
    where
            l_partkey = p_partkey
            and l_shipdate >= date '1997-06-01'
            and l_shipdate < date '1997-06-01' + interval '1' month;
  • Q15

    with revenue0(SUPPLIER_NO, TOTAL_REVENUE)  as
        (
        select
            l_suppkey,
            sum(l_extendedprice * (1 - l_discount))
        from
            lineitem
        where
            l_shipdate >= date '1995-02-01'
            and l_shipdate < date '1995-02-01' + interval '3' month
        group by
            l_suppkey
        )
    select
        s_suppkey,
        s_name,
        s_address,
        s_phone,
        total_revenue
    from
        supplier,
        revenue0
    where
        s_suppkey = supplier_no
        and total_revenue = (
            select
                max(total_revenue)
            from
                revenue0
        )
    order by
        s_suppkey;
  • Q16

    select
            p_brand,
            p_type,
            p_size,
            count(distinct ps_suppkey) as supplier_cnt
    from
            partsupp,
            part
    where
            p_partkey = ps_partkey
            and p_brand <> 'Brand#45'
            and p_type not like 'SMALL ANODIZED%'
            and p_size in (47, 15, 37, 30, 46, 16, 18, 6)
            and ps_suppkey not in (
                    select
                            s_suppkey
                    from
                            supplier
                    where
                            s_comment like '%Customer%Complaints%'
            )
    group by
            p_brand,
            p_type,
            p_size
    order by
            supplier_cnt desc,
            p_brand,
            p_type,
            p_size;
  • Q17

    select
            sum(l_extendedprice) / 7.0 as avg_yearly
    from
            lineitem,
            part
    where
            p_partkey = l_partkey
            and p_brand = 'Brand#51'
            and p_container = 'WRAP PACK'
            and l_quantity < (
                    select
                            0.2 * avg(l_quantity)
                    from
                            lineitem
                    where
                            l_partkey = p_partkey
            );
  • Q18

    select
            c_name,
            c_custkey,
            o_orderkey,
            o_orderdate,
            o_totalprice,
            sum(l_quantity)
    from
            customer,
            orders,
            lineitem
    where
            o_orderkey in (
                    select
                            l_orderkey
                    from
                            lineitem
                    group by
                            l_orderkey having
                                    sum(l_quantity) > 312
            )
            and c_custkey = o_custkey
            and o_orderkey = l_orderkey
    group by
            c_name,
            c_custkey,
            o_orderkey,
            o_orderdate,
            o_totalprice
    order by
            o_totalprice desc,
            o_orderdate
    limit 100;
  • Q19

    select
            sum(l_extendedprice* (1 - l_discount)) as revenue
    from
            lineitem,
            part
    where
            (
                    p_partkey = l_partkey
                    and p_brand = 'Brand#52'
                    and p_container in ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')
                    and l_quantity >= 3 and l_quantity <= 3 + 10
                    and p_size between 1 and 5
                    and l_shipmode in ('AIR', 'AIR REG')
                    and l_shipinstruct = 'DELIVER IN PERSON'
            )
            or
            (
                    p_partkey = l_partkey
                    and p_brand = 'Brand#43'
                    and p_container in ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')
                    and l_quantity >= 12 and l_quantity <= 12 + 10
                    and p_size between 1 and 10
                    and l_shipmode in ('AIR', 'AIR REG')
                    and l_shipinstruct = 'DELIVER IN PERSON'
            )
            or
            (
                    p_partkey = l_partkey
                    and p_brand = 'Brand#52'
                    and p_container in ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')
                    and l_quantity >= 21 and l_quantity <= 21 + 10
                    and p_size between 1 and 15
                    and l_shipmode in ('AIR', 'AIR REG')
                    and l_shipinstruct = 'DELIVER IN PERSON'
            );
  • Q20

    select
            s_name,
            s_address
    from
            supplier,
            nation
    where
            s_suppkey in (
                    select
                            ps_suppkey
                    from
                            partsupp
                    where
                            ps_partkey in (
                                    select
                                            p_partkey
                                    from
                                            part
                                    where
                                            p_name like 'drab%'
                            )
                            and ps_availqty > (
                                    select
                                            0.5 * sum(l_quantity)
                                    from
                                            lineitem
                                    where
                                            l_partkey = ps_partkey
                                            and l_suppkey = ps_suppkey
                                            and l_shipdate >= date '1996-01-01'
                                            and l_shipdate < date '1996-01-01' + interval '1' year
                            )
            )
            and s_nationkey = n_nationkey
            and n_name = 'KENYA'
    order by
            s_name;
  • Q21

    select
            s_name,
            count(*) as numwait
    from
            supplier,
            lineitem l1,
            orders,
            nation
    where
            s_suppkey = l1.l_suppkey
            and o_orderkey = l1.l_orderkey
            and o_orderstatus = 'F'
            and l1.l_receiptdate > l1.l_commitdate
            and exists (
                    select
                            *
                    from
                            lineitem l2
                    where
                            l2.l_orderkey = l1.l_orderkey
                            and l2.l_suppkey <> l1.l_suppkey
            )
            and not exists (
                    select
                            *
                    from
                            lineitem l3
                    where
                            l3.l_orderkey = l1.l_orderkey
                            and l3.l_suppkey <> l1.l_suppkey
                            and l3.l_receiptdate > l3.l_commitdate
            )
            and s_nationkey = n_nationkey
            and n_name = 'PERU'
    group by
            s_name
    order by
            numwait desc,
            s_name
    limit 100;
  • Q22

    select
            cntrycode,
            count(*) as numcust,
            sum(c_acctbal) as totacctbal
    from
            (
                    select
                            substring(c_phone from 1 for 2) as cntrycode,
                            c_acctbal
                    from
                            customer
                    where
                            substring(c_phone from 1 for 2) in
                                    ('24', '32', '17', '18', '12', '14', '22')
                            and c_acctbal > (
                                    select
                                            avg(c_acctbal)
                                    from
                                            customer
                                    where
                                            c_acctbal > 0.00
                                            and substring(c_phone from 1 for 2) in
                                                    ('24', '32', '17', '18', '12', '14', '22')
                            )
                            and not exists (
                                    select
                                            *
                                    from
                                            orders
                                    where
                                            o_custkey = c_custkey
                            )
            ) as custsale
    group by
            cntrycode
    order by
            cntrycode;