All Products
Search
Document Center

AnalyticDB:Migrate data from a self-managed Milvus cluster to an AnalyticDB for PostgreSQL instance

Last Updated:May 24, 2024

Milvus is a database designed to handle queries over input vectors and can index vectors on a trillion scale. You can migrate data from a self-managed Milvus cluster to an AnalyticDB for PostgreSQL instance by using the Python programming language.

Prerequisites

  • A Milvus cluster of v2.3.x or later is created.

  • Python 3.8 or later is installed.

  • The required Python libraries are installed.

    pip install psycopg2
    pip install pymilvus==2.3.0
    pip install pyaml
    pip install tqdm

Procedure

Step 1: Export data from a Milvus cluster

  1. Prepare the export.py script and milvus2csv.yaml configuration file for data export, and create an output directory. In this topic, output is used as the directory name.

    The export.py script contains the following content:

    import yaml
    import json
    from pymilvus import (
        connections,
        DataType,
        Collection,
    )
    import os
    from tqdm import tqdm
    
    with open("./milvus2csv.yaml", "r") as f:
        config = yaml.safe_load(f)
    
    print("configuration:")
    print(config)
    
    milvus_config = config["milvus"]
    
    milvus_type_to_adbpg_type = {
        DataType.BOOL: "bool",
        DataType.INT8: "smallint",
        DataType.INT16: "smallint",
        DataType.INT32: "integer",
        DataType.INT64: "bigint",
    
        DataType.FLOAT: "real",
        DataType.DOUBLE: "double precision",
    
        DataType.STRING: "text",
        DataType.VARCHAR: "varchar",
        DataType.JSON: "json",
    
        DataType.BINARY_VECTOR: "bit[]",
        DataType.FLOAT_VECTOR: "real[]",
    }
    
    
    def convert_to_binary(binary_data):
        decimal_value = int.from_bytes(binary_data, byteorder='big')
        binary_string = bin(decimal_value)[2:].zfill(len(binary_data) * 8)
        return ','.join(list(binary_string))
    
    
    def data_convert_to_str(data, dtype, delimeter):
        if dtype == DataType.BOOL:
            return "1" if data else "0"
        elif dtype in [DataType.INT8, DataType.INT16,
                       DataType.INT32, DataType.INT64,
                       DataType.FLOAT, DataType.DOUBLE]:
            return str(data)
        elif dtype in [DataType.STRING, DataType.VARCHAR]:
            return str(data).replace(delimeter, f"\\{delimeter}").replace("\"", "\\\"")
        elif dtype == DataType.JSON:
            return str(data).replace(delimeter, f"\\{delimeter}").replace("\"", "\\\"")
        elif dtype == DataType.BINARY_VECTOR:
            return "{" + ','.join([convert_to_binary(d) for d in data]) + "}"
        elif dtype == DataType.FLOAT_VECTOR:
            return data
    
        Exception(f"Unsupported DataType {dtype}")
    
    
    def csv_write_rows(datum, fd, fields_types, delimiter="|"):
        for data in datum:
            for i in range(len(data)):
                ftype = fields_types[i]
                data[i] = data_convert_to_str(data[i], ftype, delimiter)
            fd.write(delimiter.join(data) + "\n")
    
    
    def csv_write_header(headers, fd, delimiter="|"):
        fd.write(delimiter.join(headers) + "\n")
    
    
    def dump_collection(collection_name: str):
        results = []
        file_cnt = 0
        print("connecting to milvus...")
        connections.connect("default", **milvus_config)
    
        export_config = config["export"]
        collection = Collection(collection_name)
        collection.load()
        tmp_path = os.path.join(export_config["output_path"], collection_name)
        if not os.path.exists(tmp_path):
            os.mkdir(tmp_path)
    
        fields_meta_str = ""
        fields_types = []
        headers = []
        for schema in collection.schema.fields:
            print(schema)
            fields_types.append(schema.dtype)
            headers.append(schema.name)
            if len(fields_meta_str) != 0:
                fields_meta_str += ","
            fields_meta_str += f"{schema.name} {milvus_type_to_adbpg_type[schema.dtype]}"
            if schema.dtype == DataType.VARCHAR and "max_length" in schema.params.keys():
                fields_meta_str += f"({schema.params['max_length']})"
            if schema.is_primary:
                fields_meta_str += " PRIMARY KEY"
    
        create_table_sql = f"CREATE TABLE {collection.name} " \
                           f" ({fields_meta_str});"
    
        with open(os.path.join(export_config["output_path"], collection_name, "create_table.sql"), "w") as f:
            f.write(create_table_sql)
    
        print(create_table_sql)
    
        print(headers)
    
        total_num = collection.num_entities
        collection.load()
        query_iterator = collection.query_iterator(batch_size=1000, expr="", output_fields=headers)
    
        def write_to_csv_file(col_names, data):
            if len(results) == 0:
                return
            nonlocal file_cnt
            assert(file_cnt <= 1e9)
            output_file_name = os.path.join(export_config["output_path"], collection_name, f"{str(file_cnt).zfill(10)}.csv")
            with open(output_file_name, "w", newline="") as csv_file:
                # write header
                csv_write_header(col_names, csv_file)
                # write data
                csv_write_rows(data, csv_file, fields_types)
                file_cnt += 1
                results.clear()
    
        with tqdm(total=total_num, bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}") as pbar:
            while True:
                res = query_iterator.next()
                if len(res) == 0:
                    print("query iteration finished, close")
                    # close the iterator
                    query_iterator.close()
                    break
                for row in res:
                    row_list = []
                    for i in range(len(headers)):
                        field = row[headers[i]]
                        if isinstance(field, list) and fields_types[i] != DataType.BINARY_VECTOR:
                            row_list.append("{" + ", ".join(str(x) for x in field) + "}")
                        elif isinstance(field, dict):
                            row_list.append(json.dumps(field, ensure_ascii=False))
                        else:
                            row_list.append(field)
                    results.append(row_list)
                    if len(results) >= export_config["max_line_in_file"]:
                        write_to_csv_file(headers, data=results)
                    pbar.update(1)
    
        write_to_csv_file(headers, data=results)
    
    if __name__ == "__main__":
      for name in config["export"]["collections"]:
          dump_collection(name)
    

    The milvus2csv.yaml configuration file contains the following content:

    milvus:
       host: '<localhost>'        # The host address of the Milvus service.
       port: 19530                # The port number of the Milvus service.
       user: '<user_name>'        # The username.
       password: '<password>'     # The password.
       db_name: '<database_name>' # The name of the database.
       token: '<token_id>'        # The access token.
    
    export:
       collections:
        - 'test'
        - 'medium_articles_with_json'
        # - 'hello_milvus'
        # - 'car'
        # - 'medium_articles_with_dynamic'
        # Specify the names of all collections that you want to export.
      max_line_in_file: 40000     # The maximum number of lines that are contained in each output CSV file.
      output_path: './output'     #  The path to the directory in which the exported CSV files are stored. In this example, ./output is used.
  2. Store the export.py script, the milvus2csv.yaml configuration file, and the output directory in the same directory. Directory hierarchy:

    ├── export.py
    ├── milvus2csv.yaml
    └── output
  3. Modify the configuration items in the milvus2csv.yaml configuration file based on the information about the Milvus cluster.

  4. Run the Python script and view the output.

    python export.py

    Sample output:

    .
    ├── export.py
    ├── milvus2csv.yaml
    └── output
        ├── medium_articles_with_json
        │   ├── 0000000000.csv
        │   ├── 0000000001.csv
        │   ├── 0000000002.csv
        │   └── create_table.sql
        └── test
            ├── 0000000000.csv
            └── create_table.sql

Step 2: Import data to an AnalyticDB for PostgreSQL vector database

  1. Prepare the following data for import: the import.py script, the csv2adbpg.yaml configuration file, and the output directory created in Step 1.

    The import.py script contains the following content:

    import psycopg2
    import yaml
    import glob
    import os
    
    if __name__ == "__main__":
        with open('csv2adbpg.yaml', 'r') as config_file:
            config = yaml.safe_load(config_file)
    
        print("current config:" + str(config))
    
        db_host = config['database']['host']
        db_port = config['database']['port']
        db_name = config['database']['name']
        schema_name = config['database']['schema']
        db_user = config['database']['user']
        db_password = config['database']['password']
        data_path = config['data_path']
    
        conn = psycopg2.connect(
            host=db_host,
            port=db_port,
            database=db_name,
            user=db_user,
            password=db_password,
            options=f'-c search_path={schema_name},public'
        )
    
        cur = conn.cursor()
    
        # check schema
        cur.execute("SELECT schema_name FROM information_schema.schemata WHERE schema_name = %s", (schema_name,))
        existing_schema = cur.fetchone()
        if existing_schema:
            print(f"Schema {schema_name} already exists.")
        else:
            # create schema
            cur.execute(f"CREATE SCHEMA {schema_name}")
            print(f"Created schema: {schema_name}")
    
        for table_name in os.listdir(data_path):
            table_folder = os.path.join(data_path, table_name)
            print(f"Begin Process table: {table_name}")
            if os.path.isdir(table_folder):
                create_table_file = os.path.join(table_folder, 'create_table.sql')
                with open(create_table_file, 'r') as file:
                    create_table_sql = file.read()
                try:
                    cur.execute(create_table_sql)
                except psycopg2.errors.DuplicateTable as e:
                    print(e)
                    conn.rollback()
                    continue
                print(f"Created table: {table_name}")
    
                cnt = 0
                csv_files = glob.glob(os.path.join(table_folder, '*.csv'))
                for csv_file in csv_files:
                    with open(csv_file, 'r') as file:
                        copy_command = f"COPY {table_name} FROM STDIN DELIMITER '|' HEADER"
                        cur.copy_expert(copy_command, file)
                    cnt += 1
                    print(f"Imported data from: {csv_file} | {cnt}/{len(csv_files)} file(s) Done")
    
            conn.commit()
            print(f"Finished import table: {table_name}")
            print(' # '*60)
    
        cur.close()
        conn.close()
    

    The csv2adbpg.yaml configuration file contains the following content:

    database:
      host: "192.16.XX.XX"         # The public endpoint of the AnalyticDB for PostgreSQL instance.
      port: 5432                   # The port number of the AnalyticDB for PostgreSQL instance.
      name: "vector_database"      # The name of the destination database. 
      user: "username"             # The database account of the AnalyticDB for PostgreSQL instance.
      password: ""                 # The password of the database account.
      schema: "public"             # The name of the schema. If the schema does not exist, the schema is automatically created.
    
    data_path: "./data"            # The data source.
  2. Store the import.py script, the csv2adbpg.yaml configuration file, and the data that you want to import in the same directory. Directory hierarchy:

    .
    ├── csv2adbpg.yaml
    ├── data
    │   ├── medium_articles_with_json
    │   │   ├── 0000000000.csv
    │   │   ├── 0000000001.csv
    │   │   ├── 0000000002.csv
    │   │   └── create_table.sql
    │   └── test
    │       ├── 0000000000.csv
    │       └── create_table.sql
    └── import.py
  3. Modify the configuration items in the csv2adbpg.yaml configuration file based on the information about the AnalyticDB for PostgreSQL instance.

  4. Run the Python script.

    python import.py
  5. Check whether data is imported to the AnalyticDB for PostgreSQL vector database.

  6. Rebuild the required indexes. For more information, see Create a vector index.

References

For more information about Milvus, see Milvus documentation.