借助阿里云在亚洲加速迈向成功
一站式安全合规咨询服务
MLPS 2.0 一站式合规解决方案
依托我们的网络进军中国市场
提升面向互联网应用的性能和安全性
保障您的中国业务安全无忧
通过强大的数据安全框架保护您的数据资产
申请 ICP 备案的流程解读和咨询服务
面向大数据建设、管理及应用的全域解决方案
企业内大数据建设、管理和应用的一站式解决方案
将您的采购和销售置于同一企业级全渠道数字平台上
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人
快速搭建在线教育平台
提供域名注册、分析和保护服务
云原生 Kubernetes 容器化应用运行环境
以 Kubernetes 为使用界面的容器服务产品,提供符合容器规范的算力资源
安全的镜像托管服务,支持全生命周期管理
多集群环境下微服务应用流量统一管理
提供任意基础设施上容器集群的统一管控,助您轻松管控分布式云场景
高弹性、高可靠的企业级无服务器 Kubernetes 容器产品
敏捷安全的 Serverless 容器运行服务
为虚拟机和容器提供高可靠性、高性能、低时延的块存储服务
一款海量、安全、低成本、高可靠的云存储服务
可靠、弹性、高性能、多共享的文件存储服务
全托管、可扩展的并行文件系统服务。
全托管的 NoSQL 结构化数据实时存储服务
可抵扣多种存储产品的容量包,兼具灵活性和长期成本优化
让您的应用跨不同可用区资源自动分配访问量
随时绑定和解绑 VPC ECS
云网络公网、跨域流量统一计费
高性价比,可抵扣按流量计费的流量费用
创建云上隔离的网络,在专有环境中运行资源
在 VPC 环境下构建公网流量的出入口
具备网络状态可视化、故障智能诊断能力的自助式网络运维服务。
安全便捷的云上服务专属连接
基于阿里云专有网络的私有 DNS 解析服务
保障在线业务不受大流量 DDoS 攻击影响
系统运维和安全审计管控平台
业务上云的第一个网络安全基础设施
集零信任内网访问、办公数据保护、终端管理等多功能于一体的办公安全管控平台
提供全面统一的云原生防护平台(CNAPP)能力
防御常见 Web 攻击,缓解 HTTP 泛洪攻击
实现全站 HTTPS,呈现可信的 WEB 访问
为云上应用提供符合行业标准和密码算法等级的数据加解密、签名验签和数据认证能力
一款发现、分类和保护敏感数据的安全服务
创建、控制和管理您的加密密钥
快速提高应用高可用能力服务
围绕应用和微服务的 PaaS 平台
兼容主流开源微服务生态的一站式平台
多集群环境下微服务应用流量统一管理
Super MySQL 和 PostgreSQL,高度兼容 Oracle 语法
全托管 MySQL、PostgreSQL、SQL Server、MariaDB
兼容 Redis® 的缓存和KV数据库
兼容Apache Cassandra、Apache HBase、Elasticsearch、OpenTSDB 等多种开源接口
文档型数据库,支持副本集和分片架构
100%兼容 Apache HBase 并深度扩展,稳定、易用、低成本的NoSQL数据库。
低成本、高可用、可弹性伸缩的在线时序数据库服务
专为搜索和分析而设计,成本效益达到开源的两倍,采用最新的企业级AI搜索和AI助手功能。
一款兼容PostgreSQL协议的实时交互式分析产品
一种快速、完全托管的 TB/PB 级数据仓库
基于 Flink 为大数据行业提供解决方案
基于Qwen和其他热门模型的一站式生成式AI平台,可构建了解您业务的智能应用程
一站式机器学习平台,满足数据挖掘分析需求
高性能向量检索服务,提供低代码API和高成本效益
帮助您的应用快速构建高质量的个性化推荐服务能力
提供定制化的高品质机器翻译服务
全面的AI计算平台,满足大模型训练等高性能AI计算的算力和性能需求
具备智能会话能力的会话机器人
基于机器学习的智能图像搜索产品
基于阿里云深度学习技术,为用户提供图像分割、视频分割、文字识别等离线SDK能力,支持Android、iOS不同的适用终端。
语音识别、语音合成服务以及自学习平台
一站式智能搜索业务开发平台
助力金融企业快速搭建超低时延、高质量、稳定的行情数据服务
帮助企业快速测算和分析企业的碳排放和产品碳足迹
企业工作流程自动化,全面提高效率
金融级云原生分布式架构的一站式高可用应用研发、运维平台
eKYC 数字远程在线解决方案
可智能检测、大数据驱动的综合性反洗钱 (AML) 解决方案
阿里云APM类监控产品
实时云监控服务,确保应用及服务器平稳运行
为系统运维人员管理云基础架构提供全方位服务的云上自动化运维平台
面向您的云资源的风险检测服务
提升分布式环境下的诊断效率
日志类数据一站式服务,无需开发就能部署
ECS 预留实例
让弹性计算产品的成本和灵活性达到最佳平衡的付费方式。云原生 AI 套件
加速AI平台构建,提高资源效率和交付速度FinOps
实时分析您的云消耗并实现节约SecOps
实施细粒度安全控制DevOps
快速、安全地最大限度提高您的DevOps优势自带IP上云
自带公网 IP 地址上云全球网络互联
端到端的软件定义网络解决方案,可推动跨国企业的业务发展全球应用加速
提升面向互联网应用的性能和安全性全球互联网接入
将IDC网关迁移到云端云原生 AI 套件
加速AI平台构建,提高资源效率和交付速度FinOps
实时分析您的云消耗并实现节约SecOps
实施细粒度安全控制DevOps
快速、安全地最大限度提高您的DevOps优势金融科技云数据库解决方案
利用专为金融科技而设的云原生数据库解决方案游戏行业云数据库解决方案
提供多种成熟架构,解决所有数据问题Oracle 数据库迁移
将 Oracle 数据库顺利迁移到云原生数据库数据库迁移
加速迁移您的数据到阿里云阿里云上的数据湖
实时存储、管理和分析各种规模和类型的数据数码信贷
利用大数据和 AI 降低信贷和黑灰产风险面向企业数据技术的大数据咨询服务
帮助企业实现数据现代化并规划其数字化未来人工智能对话服务
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人EasyDispatch 现场服务管理
为现场服务调度提供实时AI决策支持在线教育
快速搭建在线教育平台窄带高清 (HD) 转码
带宽成本降低高达 30%广电级大型赛事直播
为全球观众实时直播大型赛事,视频播放流畅不卡顿直播电商
快速轻松地搭建一站式直播购物平台用于供应链规划的Alibaba Dchain
构建和管理敏捷、智能且经济高效的供应链云胸牌
针对赛事运营的创新型凭证数字服务数字门店中的云 POS 解决方案
将所有操作整合到一个云 POS 系统中元宇宙
元宇宙是下一代互联网人工智能 (AI) 加速
利用阿里云 GPU 技术,为 AI 驱动型业务以及 AI 模型训练和推理加速DevOps
快速、安全地最大限度提高您的DevOps优势数据迁移解决方案
加速迁移您的数据到阿里云企业 IT 治理
在阿里云上构建高效可控的云环境基于日志管理的AIOps
登录到带有智能化日志管理解决方案的 AIOps 环境备份与存档
数据备份、数据存档和灾难恢复用阿里云金融服务加快创新
在云端开展业务,提升客户满意度
为全球资本市场提供安全、准确和数字化的客户体验
利用专为金融科技而设的云原生数据库解决方案
利用大数据和 AI 降低信贷和黑灰产风险
建立快速、安全的全球外汇交易平台
新零售时代下,实现传统零售业转型
利用云服务处理流量波动问题,扩展业务运营、降低成本
快速轻松地搭建一站式直播购物平台
面向大数据建设、管理及应用的全域解决方案
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人
以数字化媒体旅程为当今的媒体市场准备就绪您的内容
带宽成本降低高达 30%
快速轻松地搭建一站式直播购物平台
为全球观众实时直播大型赛事,视频播放流畅不卡顿
使用阿里云弹性高性能计算 E-HPC 将本地渲染农场连接到云端
构建发现服务,帮助客户找到最合适的内容
保护您的媒体存档安全
通过统一的数据驱动平台提供一致的全生命周期客户服务
在钉钉上打造一个多功能的电信和数字生活平台
在线存储、共享和管理照片与文件
提供全渠道的无缝客户体验
面向中小型企业,为独立软件供应商提供可靠的IT服务
打造最快途径,助力您的新云业务扬帆起航
先进的SD-WAN平台,可实现WAN连接、实时优化并降低WAN成本
通过自动化和流程标准化实现快速事件响应
针对关键网络安全威胁提供集中可见性并进行智能安全分析
提供大容量、可靠且高度安全的企业文件传输
用智能技术数字化体育赛事
基于人工智能的低成本体育广播服务
专业的广播转码及信号分配管理服务
基于云的音视频内容引入、编辑和分发服务
在虚拟场馆中模拟关键运营任务
针对赛事运营的创新型凭证数字服务
智能和交互式赛事指南
轻松管理云端背包单元的绑定直播流
通过数据加强您的营销工作
元宇宙是下一代互联网
利用生成式 AI 加速创新,创造新的业务佳绩
阿里云高性能开源大模型
借助AI轻松解锁和提炼文档中的知识
基于生成式AI的一体化平台,助您在同一个工作空间内高效创作多样化内容
通过AI驱动的语音转文本服务获取洞察
探索阿里云人工智能和数据智能的所有功能、新优惠和最新产品
该体验中心提供广泛的用例和产品帮助文档,助您开始使用阿里云 AI 产品和浏览您的业务数据。
利用阿里云 GPU 技术,为 AI 驱动型业务以及 AI 模型训练和推理加速
元宇宙是下一代互联网
构建发现服务,帮助客户找到最合适的内容
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人
加速迁移您的数据到阿里云
在阿里云上建立一个安全且易扩容的环境,助力高效率且高成本效益的上云旅程
迁移到完全托管的云数据库
将 Oracle 数据库顺利迁移到云原生数据库
自带公网 IP 地址上云
利用阿里云强大的安全工具集,保障业务安全、应用程序安全、数据安全、基础设施安全和帐户安全
保护、备份和还原您的云端数据资产
MLPS 2.0 一站式合规解决方案
快速高效地将您的业务扩展到中国,同时遵守适用的当地法规
实现对 CloudOps、DevOps、SecOps、AIOps 和 FinOps 的高效、安全和透明的管理
构建您的原生云环境并高效管理集群
快速、安全地最大限度提高您的DevOps优势
实施细粒度安全控制
提供运维效率和总体系统安全性
实时分析您的云消耗并实现节约
实时存储、管理和分析各种规模和类型的数据
登录到带有智能化日志管理解决方案的 AIOps 环境
帮助企业实现数据现代化并规划其数字化未来
帮助零售商快速规划数字化之旅
将全球知名的 CRM 平台引入中国
在线存储、共享和管理照片与文件
构建、部署和管理高可用、高可靠、高弹性的应用程序
快速、安全地最大限度提高您的DevOps优势
将您的采购和销售置于同一企业级全渠道数字平台上
企业内大数据建设、管理和应用的一站式解决方案
帮助企业简化 IT 架构、实现商业价值、加速数字化转型的步伐
快速高效地将您的业务扩展到中国,同时遵守适用的当地法规
快速搜集、处理、分析联网设备产生的数据
0.0.201
日志服务智能异常分析App提供模型训练和实时巡检功能,支持对日志、指标等数据进行自动化、智能化、自适应地模型训练和异常巡检。本文介绍智能巡检的背景信息、工作原理、功能特性、基本概念、调度与执行场景和使用建议。
基于时间的数据(例如日志、指标)日积月累后会积累大量的数据。例如,某个服务每天产生1000万条数据,则一年大约为36亿条数据。对于这些数据,使用固定巡检规则的人工巡检方式面临以下问题:
效率低:对于异常现场的定位,需要人工配置各种各样的规则去进行异常的捕获。
时效差:大部分时序数据具有时效性特征。故障、变更都会引起对应指标形态的变化,前一种规则条件下的异常可能在下一时刻是正常状态。
配置难:时序数据形态各异。有突刺变化、折点变化、周期变化等诸多形态,阈值范围也各有不同。对于复杂形态下的异常,规则往往难以配置。
效果差:数据流不断动态变化,业务形态日新月异,固定的规则方法很难在新的业态下起作用,从而产生大量的误报或者漏报。对于异常的程度,不同场景,不同用户,对其容忍的程度不同。在排查问题中,有效异常点捕捉的越多,有助于具体问题的排查;而在告警通知中,高危异常点越少,越有助于提升告警处理的效率。
针对以上问题,日志服务推出智能巡检功能,通过自研的人工智能算法,对指标、日志等流数据进行一站式整合、巡检与告警。使用智能巡检功能后,您只需要组织一下具体的监控项,算法模型就会自动为您完成异常检测、业态自适应、告警精细,让您从复杂繁琐的规则配置中解脱出来。
日志服务通过SQL方式构造、聚合监控指标,按照调度规则定时拉取数据输入模型,将巡检出来的结果按照事件标准写入目标日志库(internal-ml-log)中,并对异常发送告警通知。具体工作原理如下图所示。
日志服务的智能巡检功能的特性如下表所示。
特性 | 说明 |
特性 | 说明 |
配置监控对象 | 设置SQL语句或查询分析语句,把日志数据转化成监控指标,发起任务 |
定时分析数据 | 根据需求设置具体的数据特征,配置实体项和指标项。巡检实例自动发现新的监控实体,定时拉取数据进行自动建模与智能分析。模型定时调度最高支持秒级拉取。 |
参数设置与模型效果预览 | 不同模型参数设置后支持效果预览,同时对指标时序曲线与异常分数曲线进行可视化。您可以轻松配置最适合当前数据特征的模型参数。 |
结果输出多渠道 | 巡检结果存储到目标Logstore中,通过告警通知将异常信息通知给您。 |
日志服务的智能巡检功能涉及的基本概念如下表所示。
术语 | 说明 |
术语 | 说明 |
任务 | 一个巡检任务包括数据特征、模型参数、告警策略等信息。 |
实例 | 一个巡检任务按照任务配置生成执行实例。每一个实例针对任务配置定时拉取数据,运行算法模型,分发巡检结果。
|
实例ID | 执行实例的唯一标识。 |
创建时间 | 实例创建的时间。一般是按照您配置的任务规则生成,在补运行或追赶延迟时会立即生成实例。 |
执行时间 | 实例开始执行的时间。如果重试任务,则表示最后一次开始执行的时间。 |
结束时间 | 实例执行结束的时间。如果重试任务,则表示最后一次执行结束的时间。 |
执行状态 | 实例的执行状态。取值:
|
数据特征 | 数据特征包含以下配置:
|
算法配置 | 不同的算法有不同的配置项。各个算法的配置项说明请参见通过SQL聚合指标数据进行实时检测。 |
巡检事件 | 巡检事件包含以下配置:
|
巡检任务的调度与执行的主要场景如下表所示。
场景 | 说明 |
场景 | 说明 |
从某个历史时间点开始执行巡检任务 | 在当前时间点创建巡检任务后,按照任务规则对历史数据进行处理。算法模型会快速消费历史数据、进行模型训练,并逐渐追上当前时间。超过任务创建时间或者模型结束学习时间后,发出巡检事件。 |
修改调度配置 | 修改调度配置后,下一个实例按照新配置生成。算法模型会记忆当前消费的时间位置,进而对新来的数据继续巡检。 |
重试失败的实例 | 如果实例执行失败(例如权限不足、源库不存在、目标库不存在、配置不合法等),系统支持自动重试。若您的状态一直显示启动中,可能是配置失败。错误日志会发送到您的internal-etl-log下,您可以检查下配置并重新发起。调度执行完成后,系统会根据实际执行情况变更实例状态为成功或失败。 |
建议您在使用智能巡检时,根据业务情况,明确具体的监控项,从而进行高效的数据转化与巡检。具体说明如下:
考虑数据上传Logstore的格式,明确字段的具体含义,确定观测时间间隔,从而完成巡检任务的快速配置。
掌握所监控对象的时序数据变化情况,了解其稳定性、周期性,对异常形态有初步预期,从而完成算法参数的合理配置。
按整时(例如整秒、整分钟、整小时)对齐巡检任务时间窗口,从而保证异常事件的告警及时性与多事件关联的准确性。
您还可以使用模型训练功能加强对数据的异常学习,提升未来的异常预警准确率,模型训练主要具备以下优势。
直接使用实时巡检功能,准确率不及预期。通过模型训练任务,可提升异常检测的准确性。
通过实时巡检任务检测出来的异常和您所认为的异常之间存在GAP值时,建议您先通过模型训练任务来自适应检测所需要的异常类型。
输入数据:写入模型训练服务所需要的数据,包含带标签的指标数据和不带标签的指标数据。这些数据统一存储在日志服务中,需要通过SQL查询来获取。其中,带标签的指标数据可以直接进入算法服务,不带标签的指标数据需要通过模拟异常注入方式,在获得标签后进入算法服务。
算法服务:主要包含特征工程和监督模型两部分。在算法服务中,每一个实体训练一个模型,即会使用实体ID标识对应的模型。
结果保存和可视化:模型训练任务完成后,系统会将所训练的模型进行云端保存,将数据集的验证结果、任务运行的事件等以日志形式保存到名为internal-ml-log的Logstore中。您还可以通过任务详情查看可视化结果。
创建预测任务:模型训练任务完成后,您将得到该任务中每个实体所训练的模型。接着您可以创建预测任务,通过预测任务对未来指标数据做实时的异常检测,以及日志服务打标工具,对结果进行打标,得到更多的标签数据,反复训练模型,提升准确率。
算法服务主要包括如下三部分。
数据集:通过指定的时间范围构建数据集,分为训练集和验证集。
训练集的时间长度需大于12天,因为模型训练任务需要历史一周的数据做为特征工程的前提条件;验证集长度需大于3天,因为需要三天的数据给出验证报告,更好地说明模型的拟合程度、鲁棒性以及表现水平。
特征工程:包括同环比特征、平移特征、趋势特征、窗口特征、时间特征等。
集成模型:通过集成多个树模型来构建最终的模型。