阿里云助力您在中国加快取得成功
一站式安全合规咨询服务
MLPS 2.0 一站式合规解决方案
依托我们的网络进军中国市场
提升面向互联网应用的性能和安全性
保障您的中国业务安全无忧
通过强大的数据安全框架保护您的数据资产
申请 ICP 备案的流程解读和咨询服务
面向大数据建设、管理及应用的全域解决方案
企业内大数据建设、管理和应用的一站式解决方案
将您的采购和销售置于同一企业级全渠道数字平台上
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人
快速搭建在线教育平台
提供域名注册、分析和保护服务
云原生 Kubernetes 容器化应用运行环境
以 Kubernetes 为使用界面的容器服务产品,提供符合容器规范的算力资源
安全的镜像托管服务,支持全生命周期管理
多集群环境下微服务应用流量统一管理
提供任意基础设施上容器集群的统一管控,助您轻松管控分布式云场景
高弹性、高可靠的企业级无服务器 Kubernetes 容器产品
敏捷安全的 Serverless 容器运行服务
为虚拟机和容器提供高可靠性、高性能、低时延的块存储服务
一款海量、安全、低成本、高可靠的云存储服务
可靠、弹性、高性能、多共享的文件存储服务
全托管、可扩展的并行文件系统服务。
全托管的 NoSQL 结构化数据实时存储服务
可抵扣多种存储产品的容量包,兼具灵活性和长期成本优化
让您的应用跨不同可用区资源自动分配访问量
随时绑定和解绑 VPC ECS
云网络公网、跨域流量统一计费
高性价比,可抵扣按流量计费的流量费用
创建云上隔离的网络,在专有环境中运行资源
在 VPC 环境下构建公网流量的出入口
具备网络状态可视化、故障智能诊断能力的自助式网络运维服务。
安全便捷的云上服务专属连接
基于阿里云专有网络的私有 DNS 解析服务
保障在线业务不受大流量 DDoS 攻击影响
系统运维和安全审计管控平台
业务上云的第一个网络安全基础设施
集零信任内网访问、办公数据保护、终端管理等多功能于一体的办公安全管控平台
提供7X24小时安全运维平台
防御常见 Web 攻击,缓解 HTTP 泛洪攻击
实现全站 HTTPS,呈现可信的 WEB 访问
为云上应用提供符合行业标准和密码算法等级的数据加解密、签名验签和数据认证能力
一款发现、分类和保护敏感数据的安全服务
创建、控制和管理您的加密密钥
快速提高应用高可用能力服务
围绕应用和微服务的 PaaS 平台
兼容主流开源微服务生态的一站式平台
多集群环境下微服务应用流量统一管理
企业级全托管实时数据流平台
全托管,开箱即用的Apache Kafka全托管服务
提供物联网移动端和云交互的消息队列
开箱即用的全托管 RabbitMQ 服务
提供基于消息的可靠异步通信机制
应用之间的消息队列和通知
无服务器事件总线服务
Super MySQL 和 PostgreSQL,高度兼容 Oracle 语法
全托管 MySQL、PostgreSQL、SQL Server、MariaDB
兼容 Redis® 的缓存和KV数据库
兼容Apache Cassandra、Apache HBase、Elasticsearch、OpenTSDB 等多种开源接口
文档型数据库,支持副本集和分片架构
100%兼容 Apache HBase 并深度扩展,稳定、易用、低成本的NoSQL数据库。
低成本、高可用、可弹性伸缩的在线时序数据库服务
专为搜索和分析而设计,成本效益达到开源的两倍,采用最新的企业级AI搜索和AI助手功能。
一款兼容PostgreSQL协议的实时交互式分析产品
一种快速、完全托管的 TB/PB 级数据仓库
基于 Flink 为大数据行业提供解决方案
基于Qwen和其他热门模型的一站式生成式AI平台,可构建了解您业务的智能应用程
一站式机器学习平台,满足数据挖掘分析需求
高性能向量检索服务,提供低代码API和高成本效益
帮助您的应用快速构建高质量的个性化推荐服务能力
提供定制化的高品质机器翻译服务
全面的AI计算平台,满足大模型训练等高性能AI计算的算力和性能需求
具备智能会话能力的会话机器人
基于机器学习的智能图像搜索产品
基于阿里云深度学习技术,为用户提供图像分割、视频分割、文字识别等离线SDK能力,支持Android、iOS不同的适用终端。
语音识别、语音合成服务以及自学习平台
一站式智能搜索业务开发平台
助力金融企业快速搭建超低时延、高质量、稳定的行情数据服务
帮助企业快速测算和分析企业的碳排放和产品碳足迹
企业工作流程自动化,全面提高效率
金融级云原生分布式架构的一站式高可用应用研发、运维平台
eKYC 数字远程在线解决方案
可智能检测、大数据驱动的综合性反洗钱 (AML) 解决方案
阿里云APM类监控产品
实时云监控服务,确保应用及服务器平稳运行
为系统运维人员管理云基础架构提供全方位服务的云上自动化运维平台
面向您的云资源的风险检测服务
提升分布式环境下的诊断效率
日志类数据一站式服务,无需开发就能部署
ECS 预留实例
让弹性计算产品的成本和灵活性达到最佳平衡的付费方式。云原生 AI 套件
加速AI平台构建,提高资源效率和交付速度FinOps
实时分析您的云消耗并实现节约SecOps
实施细粒度安全控制DevOps
快速、安全地最大限度提高您的DevOps优势自带IP上云
自带公网 IP 地址上云全球网络互联
端到端的软件定义网络解决方案,可推动跨国企业的业务发展全球应用加速
提升面向互联网应用的性能和安全性全球互联网接入
将IDC网关迁移到云端云原生 AI 套件
加速AI平台构建,提高资源效率和交付速度FinOps
实时分析您的云消耗并实现节约SecOps
实施细粒度安全控制DevOps
快速、安全地最大限度提高您的DevOps优势金融科技云数据库解决方案
利用专为金融科技而设的云原生数据库解决方案游戏行业云数据库解决方案
提供多种成熟架构,解决所有数据问题Oracle 数据库迁移
将 Oracle 数据库顺利迁移到云原生数据库数据库迁移
加速迁移您的数据到阿里云阿里云上的数据湖
实时存储、管理和分析各种规模和类型的数据数码信贷
利用大数据和 AI 降低信贷和黑灰产风险面向企业数据技术的大数据咨询服务
帮助企业实现数据现代化并规划其数字化未来人工智能对话服务
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人EasyDispatch 现场服务管理
为现场服务调度提供实时AI决策支持在线教育
快速搭建在线教育平台窄带高清 (HD) 转码
带宽成本降低高达 30%广电级大型赛事直播
为全球观众实时直播大型赛事,视频播放流畅不卡顿直播电商
快速轻松地搭建一站式直播购物平台用于供应链规划的Alibaba Dchain
构建和管理敏捷、智能且经济高效的供应链云胸牌
针对赛事运营的创新型凭证数字服务数字门店中的云 POS 解决方案
将所有操作整合到一个云 POS 系统中元宇宙
元宇宙是下一代互联网人工智能 (AI) 加速
利用阿里云 GPU 技术,为 AI 驱动型业务以及 AI 模型训练和推理加速DevOps
快速、安全地最大限度提高您的DevOps优势数据迁移解决方案
加速迁移您的数据到阿里云企业 IT 治理
在阿里云上构建高效可控的云环境基于日志管理的AIOps
登录到带有智能化日志管理解决方案的 AIOps 环境备份与存档
数据备份、数据存档和灾难恢复用阿里云金融服务加快创新
在云端开展业务,提升客户满意度
为全球资本市场提供安全、准确和数字化的客户体验
利用专为金融科技而设的云原生数据库解决方案
利用大数据和 AI 降低信贷和黑灰产风险
建立快速、安全的全球外汇交易平台
新零售时代下,实现传统零售业转型
利用云服务处理流量波动问题,扩展业务运营、降低成本
快速轻松地搭建一站式直播购物平台
面向大数据建设、管理及应用的全域解决方案
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人
以数字化媒体旅程为当今的媒体市场准备就绪您的内容
带宽成本降低高达 30%
快速轻松地搭建一站式直播购物平台
为全球观众实时直播大型赛事,视频播放流畅不卡顿
使用阿里云弹性高性能计算 E-HPC 将本地渲染农场连接到云端
构建发现服务,帮助客户找到最合适的内容
保护您的媒体存档安全
通过统一的数据驱动平台提供一致的全生命周期客户服务
在钉钉上打造一个多功能的电信和数字生活平台
在线存储、共享和管理照片与文件
提供全渠道的无缝客户体验
面向中小型企业,为独立软件供应商提供可靠的IT服务
打造最快途径,助力您的新云业务扬帆起航
先进的SD-WAN平台,可实现WAN连接、实时优化并降低WAN成本
通过自动化和流程标准化实现快速事件响应
针对关键网络安全威胁提供集中可见性并进行智能安全分析
提供大容量、可靠且高度安全的企业文件传输
用智能技术数字化体育赛事
基于人工智能的低成本体育广播服务
专业的广播转码及信号分配管理服务
基于云的音视频内容引入、编辑和分发服务
在虚拟场馆中模拟关键运营任务
针对赛事运营的创新型凭证数字服务
智能和交互式赛事指南
轻松管理云端背包单元的绑定直播流
通过数据加强您的营销工作
元宇宙是下一代互联网
利用生成式 AI 加速创新,创造新的业务佳绩
阿里云高性能开源大模型
借助AI轻松解锁和提炼文档中的知识
通过AI驱动的语音转文本服务获取洞察
探索阿里云人工智能和数据智能的所有功能、新优惠和最新产品
该体验中心提供广泛的用例和产品帮助文档,助您开始使用阿里云 AI 产品和浏览您的业务数据。
利用阿里云 GPU 技术,为 AI 驱动型业务以及 AI 模型训练和推理加速
元宇宙是下一代互联网
构建发现服务,帮助客户找到最合适的内容
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人
加速迁移您的数据到阿里云
在阿里云上建立一个安全且易扩容的环境,助力高效率且高成本效益的上云旅程
迁移到完全托管的云数据库
将 Oracle 数据库顺利迁移到云原生数据库
自带公网 IP 地址上云
利用阿里云强大的安全工具集,保障业务安全、应用程序安全、数据安全、基础设施安全和帐户安全
保护、备份和还原您的云端数据资产
MLPS 2.0 一站式合规解决方案
快速高效地将您的业务扩展到中国,同时遵守适用的当地法规
实现对 CloudOps、DevOps、SecOps、AIOps 和 FinOps 的高效、安全和透明的管理
构建您的原生云环境并高效管理集群
快速、安全地最大限度提高您的DevOps优势
实施细粒度安全控制
提供运维效率和总体系统安全性
实时分析您的云消耗并实现节约
实时存储、管理和分析各种规模和类型的数据
登录到带有智能化日志管理解决方案的 AIOps 环境
帮助企业实现数据现代化并规划其数字化未来
帮助零售商快速规划数字化之旅
将全球知名的 CRM 平台引入中国
在线存储、共享和管理照片与文件
构建、部署和管理高可用、高可靠、高弹性的应用程序
快速、安全地最大限度提高您的DevOps优势
将您的采购和销售置于同一企业级全渠道数字平台上
企业内大数据建设、管理和应用的一站式解决方案
帮助企业简化 IT 架构、实现商业价值、加速数字化转型的步伐
快速高效地将您的业务扩展到中国,同时遵守适用的当地法规
快速搜集、处理、分析联网设备产生的数据
0.0.201
本文介绍云原生多模数据库 Lindorm在不同场景下与开源HBase、开源MySQL和开源MongoDB之间压缩能力的对比结果。
Lindorm除多模超融合、开放兼容和云原生弹性等能力外,还具备了高效的数据压缩能力。Lindorm不仅支持深度优化的ZSTD压缩算法,还在此基础上对字典采样进行了优化,进一步减少存储成本。
本文测试压缩能力所使用到的数据库版本及其说明如下:
Lindorm:使用阿里云发行的最新版本。默认使用深度优化的ZSTD压缩算法,支持开启字典压缩。
开源HBase:使用2.3.4版本。在有高版本Hadoop支撑的情况下支持ZSTD压缩算法,但不稳定且易发生进程崩溃现象(Core Dump)。绝大部分自建HBase用户使用SNAPPY压缩算法。
开源MySQL:使用8.0版本。默认不开启数据压缩。MySQL虽然支持ZLIB压缩算法,但由于开启数据压缩后会对查询性能产生严重影响,因此MySQL用户基本不会开启数据压缩。
开源MongoDB:使用5.0版本。默认使用SNAPPY压缩算法,同时支持将SNAPPY算法替换为ZSTD算法。
本文选取了订单、车联网、日志和用户行为这四个在Lindorm中常见的场景,使用真实的数据集分别测试了Lindorm默认压缩、Lindorm开启字典压缩、HBase使用SNAPPY算法压缩、MySQL不开启压缩、MongoDB使用SNAPPY算法压缩和MongoDB使用ZSTD算法压缩这六种方式的压缩能力。
各场景下的测试对比结果汇总及测试结论请参见测试对比结果。
该场景使用TPC-H数据集进行压缩测试。TPC-H是业界常用的一套基准程序,由TPC委员会制定发布,用于评测数据库的分析型查询能力。
本测试并未完全依照<TPC benchmark name>基准测试规范,而是基于该测试规范进行了修改。本测试结果不能等同于完全遵守<TPC benchmark name>测试规范所获得的测试结果,因此不能与完全遵守该测试规范获得的测试结果进行对比。
TPC-H程序下载
生成数据
# unzip TPC-H_Tools_v3.0.0.zip
# cd TPC-H_Tools_v3.0.0/dbgen
# cp makefile.suite makefile
# vim makefile
################生成Oracle数据库的脚本和数据,主要修改以下字段
CC = gcc
DATABASE = ORACLE
MACHINE = LINUX
WORKLOAD = TPCH
################
# make --生成dbgen
# ./dbgen -s 10 --生成10GB数据
执行完成后会在当前目录下生成8个.tbl
格式的文件,每一个文件对应一张表。选择ORDERS.tbl
文件进行压缩测试,文件大小为1.76 GB,共有数据1500万行,对应表结构如下:
Field | Type |
Field | Type |
O_ORDERKEY | INT |
O_CUSTKEY | INT |
O_ORDERSTATUS | CHAR(1) |
O_TOTALPRICE | DECIMAL(15,2) |
O_ORDERDATE | DATE |
O_ORDERPRIORITY | CHAR(15) |
O_CLERK | CHAR(15) |
O_SHIPPRIORITY | INT |
O_COMMENT | VARCHAR(79) |
create 'ORDERS', {NAME => 'f', DATA_BLOCK_ENCODING => 'DIFF', COMPRESSION => 'SNAPPY', BLOCKSIZE => '32768}
CREATE TABLE ORDERS ( O_ORDERKEY INTEGER NOT NULL,
O_CUSTKEY INTEGER NOT NULL,
O_ORDERSTATUS CHAR(1) NOT NULL,
O_TOTALPRICE DECIMAL(15,2) NOT NULL,
O_ORDERDATE DATE NOT NULL,
O_ORDERPRIORITY CHAR(15) NOT NULL,
O_CLERK CHAR(15) NOT NULL,
O_SHIPPRIORITY INTEGER NOT NULL,
O_COMMENT VARCHAR(79) NOT NULL);
db.createCollection("ORDERS")
# lindorm-cli
CREATE TABLE ORDERS ( O_ORDERKEY INTEGER NOT NULL,
O_CUSTKEY INTEGER NOT NULL,
O_ORDERSTATUS CHAR(1) NOT NULL,
O_TOTALPRICE DECIMAL(15,2) NOT NULL,
O_ORDERDATE DATE NOT NULL,
O_ORDERPRIORITY CHAR(15) NOT NULL,
O_CLERK CHAR(15) NOT NULL,
O_SHIPPRIORITY INTEGER NOT NULL,
O_COMMENT VARCHAR(79) NOT NULL,
primary key(O_ORDERKEY));
数据库 | Lindorm (默认压缩) | Lindorm (字典压缩) | HBase (SNAPPY) | MySQL | MongoDB (默认SNAPPY) | MongoDB (ZSTD) |
数据库 | Lindorm (默认压缩) | Lindorm (字典压缩) | HBase (SNAPPY) | MySQL | MongoDB (默认SNAPPY) | MongoDB (ZSTD) |
表大小 | 784 MB | 639 MB | 1.23 GB | 2.10 GB | 1.63 GB | 1.32 GB |
该场景使用NGSIM数据集。NGSIM(Next Generation Simulation)是由美国联邦公路局发起的一项数据采集项目,广泛应用于车辆的跟驰和换道等驾驶行为的研究、交通流分析、微观交通模型构建、车辆运动轨迹预测和自动驾驶决策规划等。所有数据来源于美国高速公路国道101上的实际运行轨迹采集。
搜索并下载数据集文件NGSIM_Data.csv。文件大小1.54GB,共有数据1185万行,每行25列。数据结构的详细介绍及下载方式,请参见NGSIM数据集。
create 'NGSIM', {NAME => 'f', DATA_BLOCK_ENCODING => 'DIFF', COMPRESSION => 'SNAPPY', BLOCKSIZE => '32768}
CREATE TABLE NGSIM ( ID INTEGER NOT NULL,
Vehicle_ID INTEGER NOT NULL,
Frame_ID INTEGER NOT NULL,
Total_Frames INTEGER NOT NULL,
Global_Time BIGINT NOT NULL,
Local_X DECIMAL(10,3) NOT NULL,
Local_Y DECIMAL(10,3) NOT NULL,
Global_X DECIMAL(15,3) NOT NULL,
Global_Y DECIMAL(15,3) NOT NULL,
v_length DECIMAL(10,3) NOT NULL,
v_Width DECIMAL(10,3) NOT NULL,
v_Class INTEGER NOT NULL,
v_Vel DECIMAL(10,3) NOT NULL,
v_Acc DECIMAL(10,3) NOT NULL,
Lane_ID INTEGER NOT NULL,
O_Zone CHAR(10),
D_Zone CHAR(10),
Int_ID CHAR(10),
Section_ID CHAR(10),
Direction CHAR(10),
Movement CHAR(10),
Preceding INTEGER NOT NULL,
Following INTEGER NOT NULL,
Space_Headway DECIMAL(10,3) NOT NULL,
Time_Headway DECIMAL(10,3) NOT NULL,
Location CHAR(10) NOT NULL,
PRIMARY KEY(ID));
db.createCollection("NGSIM")
# lindorm-cli
CREATE TABLE NGSIM ( ID INTEGER NOT NULL,
Vehicle_ID INTEGER NOT NULL,
Frame_ID INTEGER NOT NULL,
Total_Frames INTEGER NOT NULL,
Global_Time BIGINT NOT NULL,
Local_X DECIMAL(10,3) NOT NULL,
Local_Y DECIMAL(10,3) NOT NULL,
Global_X DECIMAL(15,3) NOT NULL,
Global_Y DECIMAL(15,3) NOT NULL,
v_length DECIMAL(10,3) NOT NULL,
v_Width DECIMAL(10,3) NOT NULL,
v_Class INTEGER NOT NULL,
v_Vel DECIMAL(10,3) NOT NULL,
v_Acc DECIMAL(10,3) NOT NULL,
Lane_ID INTEGER NOT NULL,
O_Zone CHAR(10),
D_Zone CHAR(10),
Int_ID CHAR(10),
Section_ID CHAR(10),
Direction CHAR(10),
Movement CHAR(10),
Preceding INTEGER NOT NULL,
Following INTEGER NOT NULL,
Space_Headway DECIMAL(10,3) NOT NULL,
Time_Headway DECIMAL(10,3) NOT NULL,
Location CHAR(10) NOT NULL,
PRIMARY KEY(ID)) ;
数据库 | Lindorm (默认压缩) | Lindorm (开启字典压缩) | HBase (SNAPPY) | MySQL | MongoDB (默认SNAPPY) | MongoDB (ZSTD) |
数据库 | Lindorm (默认压缩) | Lindorm (开启字典压缩) | HBase (SNAPPY) | MySQL | MongoDB (默认SNAPPY) | MongoDB (ZSTD) |
表大小 | 995 MB | 818 MB | 1.72 GB | 2.51 GB | 1.88 GB | 1.50 GB |
使用Web服务器访问日志数据集:Zaker, Farzin, 2019, "Online Shopping Store - Web Server Logs", https://doi.org/10.7910/DVN/3QBYB5, Harvard Dataverse, V1
。
在日志数据集网页下载日志文件access.log
。文件大小为3.51GB,共有数据1036万行,日志数据格式示例如下:
54.36.149.41 - - [22/Jan/2019:03:56:14 +0330] "GET /filter/27|13%20%D9%85%DA%AF%D8%A7%D9%BE%DB%8C%DA%A9%D8%B3%D9%84,27|%DA%A9%D9%85%D8%AA%D8%B1%20%D8%A7%D8%B2%205%20%D9%85%DA%AF%D8%A7%D9%BE%DB%8C%DA%A9%D8%B3%D9%84,p53 HTTP/1.1" 200 30577 "-" "Mozilla/5.0 (compatible; AhrefsBot/6.1; +http://ahrefs.com/robot/)" "-"
create 'ACCESS_LOG', {NAME => 'f', DATA_BLOCK_ENCODING => 'DIFF', COMPRESSION => 'SNAPPY', BLOCKSIZE => '32768}
CREATE TABLE ACCESS_LOG ( ID INTEGER NOT NULL,
CONTENT VARCHAR(10000),
PRIMARY KEY(ID));
db.createCollection("ACCESS_LOG")
# lindorm-cli
CREATE TABLE ACCESS_LOG ( ID INTEGER NOT NULL,
CONTENT VARCHAR(10000),
PRIMARY KEY(ID));
数据库 | Lindorm (默认压缩) | Lindorm (字典压缩) | HBase (SNAPPY) | MySQL | MongoDB (SNAPPY) | MongoDB (ZSTD) |
数据库 | Lindorm (默认压缩) | Lindorm (字典压缩) | HBase (SNAPPY) | MySQL | MongoDB (SNAPPY) | MongoDB (ZSTD) |
表大小 | 646 MB | 387 MB | 737 MB | 3.99 GB | 1.17 GB | 893 MB |
该场景使用来自阿里云天池的数据集:Shop Info and User Behavior data from IJCAI-15。
在用户行为数据集网页下载data_format1.zip
,并选用user_log_format1.csv
文件,文件大小为1.91 GB,共有数据5492万行。文件结构示例如下:
user_id | item_id | cat_id | seller_id | brand_id | time_stamp | action_type |
user_id | item_id | cat_id | seller_id | brand_id | time_stamp | action_type |
328862 | 323294 | 833 | 2882 | 2661 | 829 | 0 |
328862 | 844400 | 1271 | 2882 | 2661 | 829 | 0 |
328862 | 575153 | 1271 | 2882 | 2661 | 829 | 0 |
create 'USER_LOG', {NAME => 'f', DATA_BLOCK_ENCODING => 'DIFF', COMPRESSION => 'SNAPPY', BLOCKSIZE => '32768}
CREATE TABLE USER_LOG ( ID INTEGER NOT NULL,
USER_ID INTEGER NOT NULL,
ITEM_ID INTEGER NOT NULL,
CAT_ID INTEGER NOT NULL,
SELLER_ID INTEGER NOT NULL,
BRAND_ID INTEGER,
TIME_STAMP CHAR(4) NOT NULL,
ACTION_TYPE CHAR(1) NOT NULL,
PRIMARY KEY(ID));
db.createCollection("USER_LOG")
# lindorm-cli
CREATE TABLE USER_LOG ( ID INTEGER NOT NULL,
USER_ID INTEGER NOT NULL,
ITEM_ID INTEGER NOT NULL,
CAT_ID INTEGER NOT NULL,
SELLER_ID INTEGER NOT NULL,
BRAND_ID INTEGER,
TIME_STAMP CHAR(4) NOT NULL,
ACTION_TYPE CHAR(1) NOT NULL,
PRIMARY KEY(ID));
数据库 | Lindorm (默认压缩) | Lindorm (字典压缩) | HBase (SNAPPY) | MySQL | MongoDB (SNAPPY) | MongoDB (ZSTD) |
数据库 | Lindorm (默认压缩) | Lindorm (字典压缩) | HBase (SNAPPY) | MySQL | MongoDB (SNAPPY) | MongoDB (ZSTD) |
表大小 | 805 MB | 721 MB | 1.48 GB | 2.90 GB | 3.33 GB | 2.74 GB |
通过上述对比可以得知,在不同的场景下,面对类型不同且数据量较大的数据,即使不开启字典压缩,Lindorm的压缩比相较于其他开源数据库也有明显的优势。在开启了字典压缩之后,Lindorm的压缩效果更加突出,压缩效果几乎是开源HBase的1~2倍,开源MongoDB的2~4倍,开源MySQL的3~10倍。
各场景下的测试对比结果汇总如下:
数据 | 文件大小 | Lindorm (默认压缩) | Lindorm (字典压缩) | HBase (SNAPPY) | MySQL | MongoDB (SNAPPY) | MongoDB (ZSTD) |
数据 | 文件大小 | Lindorm (默认压缩) | Lindorm (字典压缩) | HBase (SNAPPY) | MySQL | MongoDB (SNAPPY) | MongoDB (ZSTD) |
订单数据 (TPC-H) | 1.76 GB | 784 MB | 639 MB | 1.23 GB | 2.10 GB | 1.63 GB | 1.32 GB |
车联网数据(NGSIM) | 1.54 GB | 995 MB | 818 MB | 1.72 GB | 2.51 GB | 1.88 GB | 1.50 GB |
日志数据 (server log) | 3.51 GB | 646 MB | 387 MB | 737 MB | 3.99 GB | 1.17 GB | 893 MB |
用户行为数据(IJCAI-15) | 1.91 GB | 805 MB | 721 MB | 1.48 GB | 2.90 GB | 3.33 GB | 2.74 GB |