本文将为您介绍如何使用Analyze命令,以及更加简单的Auto Analyze的相关机制。
Analyze
统计信息决定是否能够生成正确的执行计划。Hologres需要收集数据的采样统计信息,包括数据的分布和特征、表的统计信息、列的统计信息、行数、列数、字段宽度、基数、频度、最大值、最小值、高频值、分桶分布特征等信息。这些信息将为优化器更新算子执行预估COST、搜索空间裁剪、估算最优JOIN ORDER、估算内存开销、估算并行度,从而生成更优的执行计划。
Analyze命令用于收集数据库中表内容的统计信息,优化器会根据这些统计信息生成最佳的查询计划,从而提高查询效率。
使用语法
-- 更新某个表的统计信息,默认会收集表中所有列的统计信息 analyze <tablename>; -- 更新某个列的统计信息,会比更新表时采样的数据更多,更精准,主要用于更新管理条件的列 analyze <tablename>(<colname>, <colname>);
参数说明
tablename为更新统计信息的表名称,colname为更新统计信息的列名称。
语法说明
两个Analyze命令的说明如下。
相同点
对列统一收集包括行数、列宽、列的最常用值(Most Common Values)、列的直方图(Histogram)信息,列的非重复值的个数(Number of Distinct Value,NDV)在内的信息。
两个命令都会相互覆盖指定列的统计信息,但不会覆盖其他列的信息。例如
analyze <tablename>(<colname1>);
命令会覆盖(更新)之前colname1
列收集的统计信息,但并不会改变colname2
列的统计信息。
不同点
analyze <tablename>;
基于采样数据,计算得出统计信息。analyze <tablename>(<colname>, <colname>);
会对列的Number of Distinct Value(NDV)进行APPROX_COUNT_DISTINCT计算,在很多情况下,这样计算的值相比采样更准确,但开销比采样表更大,因此只适合对重点列进行指定ANALYZE。NDV以外的Histogram、Width等信息,仍然通过采样得到。
因此对于具有两列的
table (colname1, colname2)
,analyze table;
不完全等价于analyze table(colname1, colname2);
。对于常用的Join列、Group By列,推荐使用
analyze <tablename>(<colname>, <colname>);
命令进行额外的统计信息收集。
需要执行Analyze的情况
推荐您在如下情况下运行
analyze <tablename>;
命令。在表执行大量的INSERT、UPDATE以及DELETE操作之后,包括导入数据。
在性能下降的情况下,多表Join查询之前,对Join的列、Group by的列进行Analyze。
执行
CREATE FOREIGN TABLE
命令后,通过Analyze收集当前外部表统计信息。执行
IMPORT FOREIGN SCHEMA
后,对后续需要查询的表进行Analyze。
注意事项
在Hologres V0.10和V1.1版本中,如果有对父表的查询,需要Analyze分区父表;如果直接对子表查询,请对子表Analyze;如果两者都有,建议两者都进行Analyze,否则可能会有缺失统计信息的情况。
如果遇到以下问题,您需要先执行Analyze,再运行导入任务,可以系统地提升效率。
多表JOIN超出内存OOM:通常会产生
Query executor exceeded total memory limitation xxxxx: yyyy bytes used
报错。导入效率较低:在Hologres查询或导入数据时,效率较低,运行的任务长时间不结束。
如果有超宽列(例如Bitmap等Bytea数据,超过1KB的Text数据等),这些超宽列的统计信息没有作用,还会使采样更消耗内存。因此对于具有上述超宽列的表,尽量避免执行
analyze <tablename>;
命令,而是采用analyze <tablename>(<colname>, <colname>);
避开超宽列,转为Analyze必要的列(例如上面推荐的Join的列、Group by的列和Filter列等)。说明1KB是经验值,宽度标准可以根据业务情况自行决定。
Auto Analyze
为了减少重复、手动的Analyze,从Hologres V0.10版本开始,支持Auto Analyze机制。开启auto analyze后,系统会根据用户的建表、数据写入和修改情况等来判断是否需要对相关的表在后台自动Analyze,无需再手动对表进行Analyze,降低操作复杂度,同时减少遗漏Analyze而导致缺失统计信息的情况。
使用语法
查看是否开启Auto Analyze
SHOW hg_enable_start_auto_analyze_worker; -- V1.1及以上版本语法,查看当前开启/关闭状态 SHOW hg_experimental_enable_start_auto_analyze_worker; -- V0.10语法,查看当前开启/关闭状态
开启/关闭语法如下,需要Superuser执行。
-- DB级别,执行后整个DB生效,V1.1及以上版本开启/关闭语法 ALTER DATABASE dbname SET hg_enable_start_auto_analyze_worker = ON; -- 开启(默认) ALTER DATABASE dbname SET hg_enable_start_auto_analyze_worker = OFF; -- 关闭 -- DB级别,执行后整个DB生效,V0.10开启/关闭语法 ALTER DATABASE dbname SET hg_experimental_enable_start_auto_analyze_worker = ON; -- 开启(默认) ALTER DATABASE dbname SET hg_experimental_enable_start_auto_analyze_worker = OFF; -- 关闭
使用限制
在Hologres中使用Auto Analyze,具体限制如下:
Auto Analyze功能仅Hologres V0.10及以上版本支持,请在Hologres管理控制台的实例详情页查看当前版本,如果您的实例是V0.10以下版本,请您使用自助升级或加入Hologres钉钉交流群反馈,详情请参见如何获取更多的在线支持?。
仅支持Superuser执行开启或关闭Auto Analyze操作。
Auto Analyze对分区表的限制如下。
分区子表发生改变,需要Auto Analyze时,会统一Analyze其父表。
分区表有扫描行数限制,采样数据时默认扫描的最大记录数是224条(16,777,216条),即若所有分区子表的记录数总和超过16,777,216条,会做一定的分区裁剪,只对其中若干分区(总和不超过16,777,216条)进行采样。
说明分区列统计信息总是全的,不受裁剪影响,但是这可能会影响与分区列同分布的列(例如极端情况是,与分区列数据一样的列)的统计信息,即一部分值采样不到,行数估计可能不准确。如果有需求可以搜索(钉钉群号:32314975)加入实时数仓Hologres交流群联系技术支持,技术侧根据实例情况评估调整扫描的最大记录数。
Auto Analyze默认最大收集256列的统计信息,如表超过256列,取前256列。可通过调整
hg_experimental_auto_analyze_max_columns_count
改变此值。Auto Analyze默认单个Worker限制的内存是4 GB,如果存在超宽的列,采样可能超出内存而导致Analyze失败。可调整
auto_analyze_work_memory_mb
参数改变其大小,但是要注意对系统内存的影响。实例规格越大,Worker数越多,Auto Analyze可用内存限制越大。
Auto Analyze工作原理
当开始Auto Analyze后,系统后台会定期巡检是否有表需要执行Analyze。
普通表(内部表,包括单表和分区表)
每隔1分钟巡检是否有表的最新动作(主要是INSERT、UPDATE、DELETE等DML操作,可能改变了数据量)。满足以下条件,系统后台触发表的Analyze,收集表的统计信息。
表有DML执行完成且数据条数变化超过当前表的数据条数的10%。若表是分区子表,则是指变化条数超过此分区数据条数的10%。
TRUNCATE TABLE清空表。
表的DDL发生变更。例如CREATE TABLE新建表,ALTER TABLE修改表结构等,不包括CALL SET_TABLE_PROPERTY修改表属性。
每隔10分钟检测所有内部表的数据变化,如果满足数据条数变化超过上一次检测的10%,则后台触发该表的Analyze。
说明这一步骤是为了检测到非显式DML(例如通过Flink、数据集成、HoloClient实时写入)更新的数据。
外部表
当前仅支持Analyze MaxCompute外部表,其他引擎的外部表暂不支持Analyze和Auto Analyze。
每隔4小时定期巡检外部表元数据或数据变化情况。满足以下条件,系统后台触发表的Analyze,收集统计信息。
外部表对应的外部系统的表(例如MaxCompute表)在两次巡检间隔(例如4小时内)改变过,改变的标准是对应MaxCompute表的
last_modify_time
处于巡检间隔之间。
说明巡检和执行在同一个调度任务中,所以下一次巡检调度开始依赖Analyze执行结束,只要离上一次开始巡检的时间满足调度周期,就可以进入下一次巡检。
配置参数
开启Auto Analyze后,系统默认会自动周期性巡检,决定需要执行Analyze的表,并进行采样计算,收集统计信息,对系统资源有一定的消耗。
在某些业务场景下,默认的机制可能不适用于业务场景,例如数据写入更新不频繁场景,可以通过修改默认参数来减少自动Analyze的频率。诸如此类可以根据业务情况更改默认参数,以此达到部分性能调优的目的。
说明只有Superuser能调整Auto Analyze的默认行为,且都需要数据库级别设置参数,且在下一分钟后生效。
使用语法
--Superuser修改Auto Analyze参数的默认值 ALTER DATABASE <dbname> SET <GUC>=<values>;
dbname为数据库名称;GUC为参数名称;values为参数值。
参数列表
参数
参数描述
支持版本
默认值
使用示例
autovacuum_naptime
巡检是否有表的最新动作的周期,单位是秒(s)。
V1.1.0及以上版本
说明需后台调整,如需调整请搜索(钉钉群号:32314975)加入实时数仓Hologres交流群申请。
60s
ALTER DATABASE <dbname> SET autovacuum_naptime = 60;
ALTER DATABASE <dbname> SET autovacuum_naptime = '60s';
ALTER DATABASE <dbname> SET autovacuum_naptime = '10min';
hg_auto_check_table_changes_interval
检查所有内部表的数据变化的周期,单位是秒(s)。
V1.1.0及以上版本
600s(10min)
--V1.1及以上版本命令语法 ALTER DATABASE <dbname> SET hg_auto_check_table_changes_interval = '600s'; --V0.10版本命令语法 ALTER DATABASE <dbname> SET hg_experimental_auto_check_table_changes_interval = '600s';
hg_auto_check_foreign_table_changes_interval
检查所有外部表的数据变化的周期,单位是秒(s)。
V1.1.0及以上版本
14400s(4小时)
--V1.1及以上版本命令语法 ALTER DATABASE <dbname> SET hg_auto_check_foreign_table_changes_interval = '14400s'; --V0.10版本命令语法 ALTER DATABASE <dbname> SET hg_experimental_auto_check_foreign_table_changes_interval = '14400s';
hg_experimental_auto_analyze_max_columns_count
自动收集统计信息的列数,单位是个。
V1.1.0及以上版本
256个
ALTER DATABASE <dbname> SET hg_experimental_auto_analyze_max_columns_count =300;
auto_analyze_work_memory_mb
Auto Analyze单个表的内存限制,单位是MB。
V1.1.54及以上版本
默认单个Worker 4096 MB,即4GB,实例规格越大,Worker越多,真实内存限制越大。
Auto Analyze单个表的内存限制修改为9GB。
ALTER DATABASE <dbname> SETauto_analyze_work_memory_mb =9216;
hg_experimental_auto_analyze_start_time
Auto-Analyze在每天运行的开始时间
说明需要与end_time是同一时区,并且start time要小于等于end_time。
V1.1.54及以上版本
00:00 +0800
修改为仅需要在0~6点执行Auto-Analyze,白天内外部表数据不变,无需Analyze的情况。
ALTER DATABASE <dbname> SET hg_experimental_auto_analyze_start_time = '00:00 +0800';
ALTER DATABASE <dbname> SET hg_experimental_auto_analyze_end_time = '06:00 +0800';
hg_experimental_auto_analyze_end_time
Auto Analyze在每天运行的结束时间。
V1.1.54及以上版本
23:59 +0800
autovacuum_enabled
表Auto Analyze的开启状态。
V1.1.54及以上版本
true,即默认全部开启。
关闭某表的Auto Analyze,以后Analyze将跳过此表。
说明仅支持使用如下命令为Hologres内部表关闭Auto Analyze。
ALTER TABLE <tablename> SET (autovacuum_enabled = false);
查询统计信息
表的统计信息被记录在hologres_statistic.hg_table_statistic表中,可以通过检查该表信息了解Analyze的状态,命令如下。
如果需要查最近一次Analyze的信息,根据analyze_timestamp
排序即可。
SELECT schema_name, -- 表的Schema
table_name, -- 表名称
schema_version, -- 表的版本
statistic_version, -- 最近一次ANALYZE的统计信息版本
total_rows, -- 最近一次ANALYZE的行数
analyze_timestamp -- 最近一次ANALYZE的结束时间
FROM hologres_statistic.hg_table_statistic
WHERE table_name = '<tablename>'
ORDER BY analyze_timestamp DESC;
每个表在hologres_statistic.hg_table_statistic表中有
0~n
条记录。0条表示从未进行过Analyze,1条及以上表示运行过Analyze。若出现两条及以上的情况,两条记录的schema_version一定不一样,因为表的Schema变化了(例如执行
ADD COLUMN
等命令会产生新的版本),会增加一条统计信息记录,老的schema_version对应的记录不再被使用。示例查询结果如下,同一个表有两条记录,而第二条记录的schema_version低于第一条,那么第二条将作废,不会被使用,也无需关注。
schema_name | table_name | schema_version | statistic_version | total_rows | analyze_timestamp -------------+------------------+----------------+-------------------+------------+--------------------- public | tbl_name_example | 13 | 8580 | 10002 | 2022-04-29 16:03:18 public | tbl_name_example | 10 | 8576 | 10002 | 2022-04-29 15:41:20 (2 rows)
Hologres V0.10和V1.1版本暂不会清理hg_table_statistic表中的历史过期记录,同时不用关心老的数据。
查看缺失统计信息的表
通过HG_STATS_MISSING视图,可以查看当前数据库中缺失统计信息的表,详情请参见HG_STATS_MISSING View。
常见问题
出现如下情况,代表Auto Analyze工作未正常,请参照解决方法进行处理。
表的统计信息是0条
问题现象:通过hologres_statistic.hg_table_statistic表查看表的统计信息,没有数据。
可能原因:
Auto Analyze没有工作,或者该表不符合Auto Analyze触发条件。
Auto Analyze本身的问题导致,需要提交工单具体排查原因。
解决方法:手动触发一次Analyze。
analyze_timestamp
过小问题现象:查询结果中
analyze_timestamp
过小(即比当前时间小很多),代表长时间没有进行过Analyze。可能原因:
某种原因未能正常执行Auto Analyze。
手动关闭过Auto Analyze。
解决方法:先手动触发Analyze,再提交工单排查原因。