您可以通过函数计算控制台、SDK或Serverless Devs来体验GPU实例的最佳实践。本文以Python语言为例,说明如何通过控制台,将原始图像经过函数代码处理,实现风格合成以及对象检测。
应用场景与优势
传统的面向人工智能应用的GPU基础设施,通常会面临着建设周期长、运维复杂度高、集群利用率低和成本较高等问题。函数计算的GPU实例将这些问题从用户侧转移至云厂商侧,让您无需关心底层GPU基础设施,完全聚焦于业务本身,极大地简化了业务的实现路径。
在不同的应用场景下,函数计算提供的GPU实例与CPU相比所具备的优势如下。
成本优先的AI应用场景
提供弹性预留模式,从而按需为客户保留GPU工作实例,对比自建GPU集群拥有较大成本优势。
提供GPU共享虚拟化,支持以1/2、独占方式使用GPU,允许业务以更精细化的方式配置GPU实例。
效率优先的AI应用场景
屏蔽运维GPU集群的繁重负担(驱动/CUDA版本管理、机器运行管理、GPU坏卡管理),使得开发者专注于代码开发、聚焦业务目标的达成。
GPU实例的更多信息,请参见实例类型及使用模式。
神经风格迁移教程
神经风格迁移是一种生成技术,主要用来合成两张图像,即从其中一张图像提取内容,另一张图像提取风格,以合成一张新图像。本示例通过使用TensorFlow Hub预置模型,完成任意图像的风格合成。
合成效果
内容图像 | 风格图像 | 合成图像 |
前提条件
通用
为了确保您的业务正常进行,请加入钉钉用户群(钉钉群号:11721331),申请GPU实例的使用权限,同时提供以下信息。
组织名称,例如您所在的公司名称。
您的阿里云账号ID。
您期望使用GPU实例的地域,例如华南1(深圳)。
联系方式,例如您的手机号、邮箱或钉钉账号等。
您的镜像大小。
将需处理的音视频资源上传至在GPU实例所在地域的OSS Bucket中,且您对该Bucket中的文件有读写权限。具体步骤,请参见控制台上传文件。权限相关说明,请参见修改存储空间读写权限。
通过函数计算控制台部署GPU应用
部署镜像。
建容器镜像服务的企业版实例或个人版实例。
推荐您创建企业版实例。具体操作步骤,请参见创建企业版实例。
创建命名空间和镜像仓库。
具体操作步骤,请参见步骤二:创建命名空间和步骤三:创建镜像仓库。
在容器镜像服务控制台,根据界面提示完成Docker相关操作步骤。然后将上述示例app.py和Dockerfile推送至实例镜像仓库。
创建GPU函数。具体操作步骤,请参见创建Custom Container函数。
修改函数的执行超时时间。
在目标函数的配置页签,在左侧导航栏,选择运行时,然后单击运行时右侧的编辑。
在运行时面板,修改执行超时时间,然后单击确定。
说明CPU转码耗时会超过默认的60s,因此建议您修改执行超时时间为较大的值。
配置GPU预留实例。关于配置预留实例的具体操作,请参见配置预留实例。
配置完成后,您可以在规则列表查看预留的GPU实例是否就绪。即当前预留实例数是否为设置的预留实例数。
使用cURL测试函数。
在函数详情页面,单击配置页签,然后在左侧导航栏,选择触发器,查看触发器的配置信息,获取触发器的访问地址。
在命令行执行如下命令,调用GPU函数。
查看线上函数版本
curl -v "https://tgpu-ff-console-tgpu-ff-console-ajezot****.cn-shenzhen.fcapp.run" {"function": "trans_gpu"}
执行风格迁移
curl "https://tgpu-fu-console-tgpu-se-console-zpjido****.cn-shenzhen.fcapp.run" -H 'RUN-MODE: normal' {"result": "transfer ok"}
结果验证
您可通过在浏览器中访问以下域名,查看经过风格合成处理后的图片:
https://cri-zbtsehbrr8******-registry.oss-cn-shenzhen.aliyuncs.com/stylized-image.png
本域名仅为示例,需以实际情况为准。