借助阿里云在亚洲加速迈向成功
一站式安全合规咨询服务
MLPS 2.0 一站式合规解决方案
依托我们的网络进军中国市场
提升面向互联网应用的性能和安全性
保障您的中国业务安全无忧
通过强大的数据安全框架保护您的数据资产
申请 ICP 备案的流程解读和咨询服务
面向大数据建设、管理及应用的全域解决方案
企业内大数据建设、管理和应用的一站式解决方案
将您的采购和销售置于同一企业级全渠道数字平台上
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人
快速搭建在线教育平台
提供域名注册、分析和保护服务
云原生 Kubernetes 容器化应用运行环境
以 Kubernetes 为使用界面的容器服务产品,提供符合容器规范的算力资源
安全的镜像托管服务,支持全生命周期管理
多集群环境下微服务应用流量统一管理
提供任意基础设施上容器集群的统一管控,助您轻松管控分布式云场景
高弹性、高可靠的企业级无服务器 Kubernetes 容器产品
敏捷安全的 Serverless 容器运行服务
为虚拟机和容器提供高可靠性、高性能、低时延的块存储服务
一款海量、安全、低成本、高可靠的云存储服务
可靠、弹性、高性能、多共享的文件存储服务
全托管、可扩展的并行文件系统服务。
全托管的 NoSQL 结构化数据实时存储服务
可抵扣多种存储产品的容量包,兼具灵活性和长期成本优化
让您的应用跨不同可用区资源自动分配访问量
随时绑定和解绑 VPC ECS
云网络公网、跨域流量统一计费
高性价比,可抵扣按流量计费的流量费用
创建云上隔离的网络,在专有环境中运行资源
在 VPC 环境下构建公网流量的出入口
具备网络状态可视化、故障智能诊断能力的自助式网络运维服务。
安全便捷的云上服务专属连接
基于阿里云专有网络的私有 DNS 解析服务
保障在线业务不受大流量 DDoS 攻击影响
系统运维和安全审计管控平台
业务上云的第一个网络安全基础设施
集零信任内网访问、办公数据保护、终端管理等多功能于一体的办公安全管控平台
提供7X24小时安全运维平台
防御常见 Web 攻击,缓解 HTTP 泛洪攻击
实现全站 HTTPS,呈现可信的 WEB 访问
为云上应用提供符合行业标准和密码算法等级的数据加解密、签名验签和数据认证能力
一款发现、分类和保护敏感数据的安全服务
创建、控制和管理您的加密密钥
快速提高应用高可用能力服务
围绕应用和微服务的 PaaS 平台
兼容主流开源微服务生态的一站式平台
多集群环境下微服务应用流量统一管理
Super MySQL 和 PostgreSQL,高度兼容 Oracle 语法
全托管 MySQL、PostgreSQL、SQL Server、MariaDB
兼容 Redis® 的缓存和KV数据库
兼容Apache Cassandra、Apache HBase、Elasticsearch、OpenTSDB 等多种开源接口
文档型数据库,支持副本集和分片架构
100%兼容 Apache HBase 并深度扩展,稳定、易用、低成本的NoSQL数据库。
低成本、高可用、可弹性伸缩的在线时序数据库服务
专为搜索和分析而设计,成本效益达到开源的两倍,采用最新的企业级AI搜索和AI助手功能。
一款兼容PostgreSQL协议的实时交互式分析产品
一种快速、完全托管的 TB/PB 级数据仓库
基于 Flink 为大数据行业提供解决方案
基于Qwen和其他热门模型的一站式生成式AI平台,可构建了解您业务的智能应用程
一站式机器学习平台,满足数据挖掘分析需求
高性能向量检索服务,提供低代码API和高成本效益
帮助您的应用快速构建高质量的个性化推荐服务能力
提供定制化的高品质机器翻译服务
全面的AI计算平台,满足大模型训练等高性能AI计算的算力和性能需求
具备智能会话能力的会话机器人
基于机器学习的智能图像搜索产品
基于阿里云深度学习技术,为用户提供图像分割、视频分割、文字识别等离线SDK能力,支持Android、iOS不同的适用终端。
语音识别、语音合成服务以及自学习平台
一站式智能搜索业务开发平台
助力金融企业快速搭建超低时延、高质量、稳定的行情数据服务
帮助企业快速测算和分析企业的碳排放和产品碳足迹
企业工作流程自动化,全面提高效率
金融级云原生分布式架构的一站式高可用应用研发、运维平台
eKYC 数字远程在线解决方案
可智能检测、大数据驱动的综合性反洗钱 (AML) 解决方案
阿里云APM类监控产品
实时云监控服务,确保应用及服务器平稳运行
为系统运维人员管理云基础架构提供全方位服务的云上自动化运维平台
面向您的云资源的风险检测服务
提升分布式环境下的诊断效率
日志类数据一站式服务,无需开发就能部署
ECS 预留实例
让弹性计算产品的成本和灵活性达到最佳平衡的付费方式。云原生 AI 套件
加速AI平台构建,提高资源效率和交付速度FinOps
实时分析您的云消耗并实现节约SecOps
实施细粒度安全控制DevOps
快速、安全地最大限度提高您的DevOps优势自带IP上云
自带公网 IP 地址上云全球网络互联
端到端的软件定义网络解决方案,可推动跨国企业的业务发展全球应用加速
提升面向互联网应用的性能和安全性全球互联网接入
将IDC网关迁移到云端云原生 AI 套件
加速AI平台构建,提高资源效率和交付速度FinOps
实时分析您的云消耗并实现节约SecOps
实施细粒度安全控制DevOps
快速、安全地最大限度提高您的DevOps优势金融科技云数据库解决方案
利用专为金融科技而设的云原生数据库解决方案游戏行业云数据库解决方案
提供多种成熟架构,解决所有数据问题Oracle 数据库迁移
将 Oracle 数据库顺利迁移到云原生数据库数据库迁移
加速迁移您的数据到阿里云阿里云上的数据湖
实时存储、管理和分析各种规模和类型的数据数码信贷
利用大数据和 AI 降低信贷和黑灰产风险面向企业数据技术的大数据咨询服务
帮助企业实现数据现代化并规划其数字化未来人工智能对话服务
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人EasyDispatch 现场服务管理
为现场服务调度提供实时AI决策支持在线教育
快速搭建在线教育平台窄带高清 (HD) 转码
带宽成本降低高达 30%广电级大型赛事直播
为全球观众实时直播大型赛事,视频播放流畅不卡顿直播电商
快速轻松地搭建一站式直播购物平台用于供应链规划的Alibaba Dchain
构建和管理敏捷、智能且经济高效的供应链云胸牌
针对赛事运营的创新型凭证数字服务数字门店中的云 POS 解决方案
将所有操作整合到一个云 POS 系统中元宇宙
元宇宙是下一代互联网人工智能 (AI) 加速
利用阿里云 GPU 技术,为 AI 驱动型业务以及 AI 模型训练和推理加速DevOps
快速、安全地最大限度提高您的DevOps优势数据迁移解决方案
加速迁移您的数据到阿里云企业 IT 治理
在阿里云上构建高效可控的云环境基于日志管理的AIOps
登录到带有智能化日志管理解决方案的 AIOps 环境备份与存档
数据备份、数据存档和灾难恢复用阿里云金融服务加快创新
在云端开展业务,提升客户满意度
为全球资本市场提供安全、准确和数字化的客户体验
利用专为金融科技而设的云原生数据库解决方案
利用大数据和 AI 降低信贷和黑灰产风险
建立快速、安全的全球外汇交易平台
新零售时代下,实现传统零售业转型
利用云服务处理流量波动问题,扩展业务运营、降低成本
快速轻松地搭建一站式直播购物平台
面向大数据建设、管理及应用的全域解决方案
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人
以数字化媒体旅程为当今的媒体市场准备就绪您的内容
带宽成本降低高达 30%
快速轻松地搭建一站式直播购物平台
为全球观众实时直播大型赛事,视频播放流畅不卡顿
使用阿里云弹性高性能计算 E-HPC 将本地渲染农场连接到云端
构建发现服务,帮助客户找到最合适的内容
保护您的媒体存档安全
通过统一的数据驱动平台提供一致的全生命周期客户服务
在钉钉上打造一个多功能的电信和数字生活平台
在线存储、共享和管理照片与文件
提供全渠道的无缝客户体验
面向中小型企业,为独立软件供应商提供可靠的IT服务
打造最快途径,助力您的新云业务扬帆起航
先进的SD-WAN平台,可实现WAN连接、实时优化并降低WAN成本
通过自动化和流程标准化实现快速事件响应
针对关键网络安全威胁提供集中可见性并进行智能安全分析
提供大容量、可靠且高度安全的企业文件传输
用智能技术数字化体育赛事
基于人工智能的低成本体育广播服务
专业的广播转码及信号分配管理服务
基于云的音视频内容引入、编辑和分发服务
在虚拟场馆中模拟关键运营任务
针对赛事运营的创新型凭证数字服务
智能和交互式赛事指南
轻松管理云端背包单元的绑定直播流
通过数据加强您的营销工作
元宇宙是下一代互联网
利用生成式 AI 加速创新,创造新的业务佳绩
阿里云高性能开源大模型
借助AI轻松解锁和提炼文档中的知识
通过AI驱动的语音转文本服务获取洞察
探索阿里云人工智能和数据智能的所有功能、新优惠和最新产品
该体验中心提供广泛的用例和产品帮助文档,助您开始使用阿里云 AI 产品和浏览您的业务数据。
利用阿里云 GPU 技术,为 AI 驱动型业务以及 AI 模型训练和推理加速
元宇宙是下一代互联网
构建发现服务,帮助客户找到最合适的内容
全渠道内置 AI 驱动、拟人化、多语言对话的聊天机器人
加速迁移您的数据到阿里云
在阿里云上建立一个安全且易扩容的环境,助力高效率且高成本效益的上云旅程
迁移到完全托管的云数据库
将 Oracle 数据库顺利迁移到云原生数据库
自带公网 IP 地址上云
利用阿里云强大的安全工具集,保障业务安全、应用程序安全、数据安全、基础设施安全和帐户安全
保护、备份和还原您的云端数据资产
MLPS 2.0 一站式合规解决方案
快速高效地将您的业务扩展到中国,同时遵守适用的当地法规
实现对 CloudOps、DevOps、SecOps、AIOps 和 FinOps 的高效、安全和透明的管理
构建您的原生云环境并高效管理集群
快速、安全地最大限度提高您的DevOps优势
实施细粒度安全控制
提供运维效率和总体系统安全性
实时分析您的云消耗并实现节约
实时存储、管理和分析各种规模和类型的数据
登录到带有智能化日志管理解决方案的 AIOps 环境
帮助企业实现数据现代化并规划其数字化未来
帮助零售商快速规划数字化之旅
将全球知名的 CRM 平台引入中国
在线存储、共享和管理照片与文件
构建、部署和管理高可用、高可靠、高弹性的应用程序
快速、安全地最大限度提高您的DevOps优势
将您的采购和销售置于同一企业级全渠道数字平台上
企业内大数据建设、管理和应用的一站式解决方案
帮助企业简化 IT 架构、实现商业价值、加速数字化转型的步伐
快速高效地将您的业务扩展到中国,同时遵守适用的当地法规
快速搜集、处理、分析联网设备产生的数据
0.0.201
日志处理是一个很大范畴,其中包括实时计算、数据仓库、离线计算等众多点。这篇文章主要介绍在实时计算场景中,如何能做到日志处理保序、不丢失、不重复,并且在上下游业务系统不可靠(存在故障)、业务流量剧烈波动情况下,如何保持这三点。
为方便理解,本文使用《银行的一天》作为例子将概念解释清楚。在文档末尾,介绍日志服务Logstore消费组功能,如何与Spark Streaming、Storm Spout等配合,完成日志数据的处理过程。
半世纪前说起日志,想到的是船长、操作员手里厚厚的笔记。如今计算机诞生使得日志产生与消费无处不在:服务器、路由器、传感器、GPS、订单、及各种设备通过不同角度描述着我们生活的世界。从船长日志中我们可以发现,日志除了带一个记录的时间戳外,可以包含几乎任意的内容,例如:一段记录文字、一张图片、天气状况、船行方向等。半个世纪过去了,“船长日志”的方式已经扩展到一笔订单、一项付款记录、一次用户访问、一次数据库操作等多样的领域。
在计算机世界中,常用的日志有:Metric、Binlog(Database、NoSQL)、Event、Auditing、Access Log等。
在该文档的示例中,我们把用户到银行的一次操作作为一条日志数据。其中包括用户、账号名、操作时间、操作类型、操作金额等。
例如:
2016-06-28 08:00:00 张三 存款 1000元美元
2016-06-27 09:00:00 李四 取款 20000元美元
为了能抽象问题,这里以日志服务Logstore作为演示模型。其包含以下内容:
Log:由时间及一组Key-Value对组成。
LogGroup:一组日志的集合,包含相同Meta(IP、Source)等。
两者关系如下:
Shard:分区,LogGroup读写基本单元,可以理解以48小时为周期的FIFO队列。每个Shard提供5 MB/s写数据和10 MB/s读数据能力。Shard有逻辑区间(BeginKey,EndKey)用以归纳不同类型数据。
Logstore:日志库,用以存放同一类日志数据。Logstore是一个载体,通过由[0000,FFFF..)
区间Shard组合构建而成,Logstore会包含1个或多个Shard。
Project:存储Logstore的容器。
这些概念相互关系如下。
以19世纪银行为例。某个城市有若干用户(Producer),到银行去存取钱(User Operation),银行有若干个柜员(Consumer)。因为19世纪还没有电脑可以实时同步,因此每个柜员都有一个小账本能够记录对应信息,每天晚上把钱和账本拿到公司去对账。
在分布式世界里,我们可以把柜员认为是固定内存和计算能力单机。用户是来自各个数据源的请求,Bank大厅是处理用户存取数据的日志库(Logstore)。
该场景中,各角色及其主要操作包括:
Log/LogGroup:用户发出的存取款等操作。
用户(User):Log/LogGroup生产者。
柜员(Clerk):银行处理用户请求的员工。
银行大厅(Logstore):用户产生的操作请求先进入银行大厅,再交给柜员处理。
分区(Shard):银行大厅用以安排用户请求的组织方式。
银行有2个柜员(A,B),张三进了银行,在柜台A上存了1000美元,A把张三1000美元存在自己的账本上。张三到了下午觉得手头紧到B柜台取钱,B柜员一看账本,发现不对,张三并没有在这里存钱。
从这个例子可以看到,存取款是一个严格有序的操作,需要同一个柜员(处理器)来处理同一个用户的操作,这样才能保持状态一致性。
实现保序的方法很简单:排队,创建一个Shard,终端只有一个柜员A来处理。用户请求先进先出,一点问题都没有。但带来的问题是效率低下,假设有1000个用户来进行操作,即使有10个柜员也无济于事。这种场景怎么办?
假设有10个柜员,我们可以创建10个Shard。要保证10个柜员对同一个账户的操作是有序的,可以根据一致性Hash方式将用户进行映射。例如我们开10个队伍(Shard),每个柜员处理一个Shard,把不同银行账号或用户姓名,映射到特定Shard中。在这种情况下张三Hash(Zhang)= Z落在一个特定Shard中(区间包含Z),处理端面对的一直是柜员A。
当然如果张姓用户比较多,也可以换其他策略。例如根据用户AccountID、ZipCode进行Hash,这样就可以使得每个Shard中操作请求更均匀。
张三拿着存款在柜台A处理,柜员A处理到一半去接了个电话,等回来后以为业务已经办理好了,于是开始处理下一个用户的请求,张三的存款请求因此被丢失。
虽然机器不会犯错,在线时间和可靠性要比柜员高。但难免也会遇到电脑故障、或因负载高导致的处理中断,因为这样的场景丢失用户的存款,后果是无法容忍的。
A可以在自己日记本上(非账本)记录一个项目:当前已处理到Shard哪个位置,只有当张三的这个存款请求被完全确认后,柜员A才能叫下一个。
带来问题是什么?可能会重复。例如A已经处理完张三请求(更新账本),准备在日记本上记录处理到哪个位置之时,突然被叫开了,当A回来后,发现张三请求没有记录下来,A会把张三请求再次处理一遍,这就会造成重复。
重复是否一定会带来问题?答案是不一定。
在幂等情况下,重复虽然会有浪费,但对结果没有影响。什么叫幂等:重复消费不对结果产生影响的操作叫做幂等。例如用户有一个操作“查询余额”,该操作是一个只读操作,重复做不影响结果。对于非只读操作,例如注销用户这类操作,可以连续做两次。
但现实生活中大部分操作不是幂等的,例如存款、取款等,重复进行计算会对结果带来致命的影响。解决的方式是什么呢?柜员(A)需要把账本完成+日记本标记Shard中处理完成作为一个事务合并操作,并记录下来(CheckPoint)。
如果A暂时离开或永久离开,其他柜员只要使用相同的规范:记录中已操作则处理下一个即可,如果没有则重复做,过程中需要保证原子性。
CheckPoint可以将Shard中的元素位置(或时间)作为Key,放入一个可以持久化的对象中。代表当前元素已经被处理完成。
以上三个概念解释完成后,原理并不复杂。但在现实世界中,用户数、处理量规模的变化与不确定性会使得以上三个问题变得更复杂。
遇到发工资的日期,用户数会大涨。
柜员(Clerk)毕竟不是机器人,也需要休假,需要吃午饭。
银行经理为了整体服务体验,需要增加柜员。那以什么作为判断标准增加柜员呢?
柜员在交接过程中,能否非常容易地传递账本与记录?
8点银行开门。
只有一个Shard0,用户请求全部排在Shard0下,柜员A也正好可以处理。
10点进入高峰期。
银行经理决定把10点后Shard0分裂成2个新Shard(Shard1,Shard2),并且给了如下规定,姓名是[A-W]用户到Shard1中排队,姓名是[X, Y, Z]
到Shard2中排队等待处理。这两个Shard区间明显是不均匀的,因为用户的姓氏分布就是不均匀的,通过这种映射方式可以保证柜员处理的均衡。
10~12点请求消费状态。
柜员A处理2个Shard非常吃力,于是经理派出柜员B、C出场。因为只有2个Shard,B开始接管A负责一个Shard,C处于闲置状态。
中午12点人越来越多。
银行经理觉得Shard1下柜员A压力太大,因此从Shard1中拆分出(Shard3,Shard4)两个新的Shard,Shard3由柜员A处理、Shard4由柜员C处理。在12点后原来排在Shard1中的请求,分别到Shard3,Shard4中。
12点后请求消费状态。
流量持续到下午4点后,开始逐渐减少。
因此银行经理让柜员A、B休息,让C同事处理Shard2、Shard3、Shard4中的请求。并逐步将Shard2与Shard3合并成Shard5,最后将Shard5和Shard4合并成一个Shard,当处理完成Shard中所有请求后银行关门。
上述过程可以抽象成日志处理的经典场景,如果要解决银行的业务需求,我们要提供弹性伸缩、并且灵活适配的日志基础框架,包括:
对Shard进行弹性伸缩。
消费者上线与下线能够对Shard自动适配,过程中数据不丢失。过程中支持保序。
过程中不重复(需要消费者配合)。
观察到消费进度,以便合理调配计算资源。
支持更多渠道日志接入(对银行而言开通网上银行、手机银行、支票等渠道,可以接入更多的用户请求)。
您可以通过Logstore消费组解决日志实时处理中的这些经典问题,只需把精力放在业务逻辑上,而不用去担心流量扩容、Failover等琐事。更多信息,请参见通过消费组消费数据。
另外,Spark Streaming已经通过消费组实现了对应的接口,欢迎使用。更多信息,请参见Spark Streaming消费。