All Products
Search
Document Center

Platform For AI:Stratified Sampling

Last Updated:May 09, 2024

The Stratified Sampling component stratifies the input data based on the values of a stratification column and randomly samples data in each stratum.

Configure the component

You can use one of the following methods to configure the Stratified Sampling component.

Method 1: Configure the component on the pipeline page

Configure the component parameters on the pipeline page of Machine Learning Designer.

Tab

Parameter

Description

Fields Setting

Stratification Column

The column that is used for stratification.

Parameters Setting

Sample Size

The value must be a positive integer.

Sampling Fraction

The value must be a floating-point number. Valid values: (0,1).

Random Seed

The value is automatically generated by the system. The default value is 1234567.

Tuning

Cores

The value must be a positive integer. By default, the system determines the value.

Memory Size per Core

The value must be a positive integer. Valid values: (1,65536). By default, the system determines the value.

Method 2: Use PAI commands

Configure the component parameters by using PAI commands. You can use the SQL Script component to call PAI commands. For more information, see SQL Script.

PAI -name StratifiedSample
    -project algo_public
    -DinputTableName="test_input"
    -DoutputTableName="test_output"
    -DstrataColName="label"
    -DsampleSize="A:200,B:300,C:500"
    -DrandomSeed=1007
    -Dlifecycle=30;

Parameter

Required

Description

Default value

inputTableName

Yes

The name of the input table.

No default value

inputTablePartitions

No

The partitions that are selected from the input table for training. The following formats are supported:

  • Partition_name=value

  • name1=value1/name2=value2: multi-level partitions

Note

Separate multiple partitions with commas (,)

All partitions

outputTableName

Yes

The name of the output table.

No default value

strataColName

Yes

The name of the column that is used as the key for stratification.

No default value

sampleSize

No

The number of samples.

  • If the value is a positive integer, it indicates the number of samples in each stratum.

  • If the value is a string, the string must be in the format of strata0:n0,strata1:n1. The value after a colon (:) indicates the number of samples that need to be configured for the stratum specified before the colon (:).

Note
  • If both the sampleSize and sampleRatio parameters are empty, an error is returned.

  • If both the sampleSize and sampleRatio parameters are specified, the sampleSize parameter takes precedence.

No default value

sampleRatio

No

The sampling proportion.

  • If the value is a number, it must be a floating-point number between 0 and 1, and the value indicates the sampling proportion of each stratum.

  • If the value is a string, the format must be strata0:r0,strata1:r1. The value after a colon (:) indicates the sampling proportion for the stratum specified before the colon (:).

No default value

randomSeed

No

The random seed. The value must be a positive integer.

123456

lifecycle

No

The lifecycle of the output table. Valid values: [1,3650].

No default value

coreNum

No

The number of cores used in computing. The value must be a positive integer.

Determined by the system

memSizePerCore

No

The memory size of each core. Valid values: (1,65536). Unit: MB.

Determined by the system